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Simulating Ising spin glasses on a quantum computer
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A linear-time algorithm is presented for the construction of the Gibbs distribution of configurations in the
Ising model, on a quantum computer. The algorithm is designed so that each run provides one configuration
with a quantum probability equal to the corresponding thermodynamic weight. The partition function is thus
approximated efficiently. The algorithm neither suffers from critical slowing down nor gets stuck in local
minima. The algorithm can be applied in any dimension, to a class of spin-glass Ising models with a finite
portion of frustrated plaquettes, diluted Ising models, and models with a magnetic field.
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I. INTRODUCTION tion. This amounts to an exponential parallelism compared to

. S classical computers in which at any given time only one
The algorithm of Shof1] for the polynomial time solu number can be stored in thé-bit register. However, this

tion of the factorization problem on a quantum computer wag X . ;
) . : ) ) ature alone is not enough since only a single quantum state
received with much excitement in the computer science and

hysics communitieg2,3]. It indicates that quantum comput- 'S available after measuremel@. The full power of guan-
pny N : qua PUt +um computation is realized only when the superposition
ers have a potential for the effective solution of problems .~~~ = . . -
) ; ~principle is combined with the ability of quantum states to
that are unfeasible on a classical computer. The actual utilif

zation of this potential would require, in addition to many interfere The latter has no classical analog and is the quan-

years of work on the hardware, the development of algo:[um ingredient that allows one to selectively control which

rithms that would optimally exploit the strengths while over- igfsd\rlglmgi\t/e the highest probability of appearing after
coming the shortcomings of quantum computers, in particu- Similarly to classical computers, it turns out that all uni-

lar the problem of decoherenchl5|. Unlike classical tary transformations involving qubits can be broken into
computers in which each bit is a two-state system that can bg y 9

in either state 0 or 1, the quantum ko qubib can be in any two-qubit unitary transformauor[s?—lO]. This alloyvs one to
" construct a universal set of binary gates that is capable of
superposition of the form

implementing all the required operations. The actual con-
|) = arg|0) + @ | 1), (1.1) strl_Jction of a quantum computer is a formidable task that i_s
believed to require many years before a basic prototype will
as long agao|2+|a;|2=1. When a measurement of the qu- b€ ready. Some of the potential physical media proposed for
bit takes place the result will be the staB$ with probability ~duantum computers include ions in ion trajil], atoms
|aro|? or |1) with probability |a|2. In the first case the sys- Coupled to optical resonatofd?], interacting electrons in
tem will then remain in the stat), while in the second guantum dot$13], and Ramsey atomic interferome{A].
case it will remain in the statfl). Due to superposition, a The main difficulty |_dent|f|ed so far in the construction of
system of N qubits is described by a unit vector in a & duantum computer is the decoherence of the quantum su-
2N_dimensional complex vector spa@i@e Hilbert spaceof perposition due to the interaction with the environment. To

the form avoid errors one needs to isolate the quantum computer from
the environment as much as possible. Some redundancy
N1 combined with error correcting codes is considered as a
) = E aili), (1.2) promising way to reduce the accumulat_ion (_)f_errors_ during
i=0 the computatiorf15—23. Another potential difficulty is to

maintain sufficient precision so that the quantum computer
whereli) are the 2 basis vectors antl|a;|?=1. Computa-  will provide accurate results even after many steps of com-
tions are done by changing the state of the system. Singsuting. Therefore, an efficient quantum algorithm should sat-
conservation of probability is required only unitary transfor-jsfy not only that the time and memory required for the com-
mations are allowed. One source of the potential strength gjutation grow polynomially with the input size, but also the
quantum computers is due to the fact that computations argrecision: the number of bits of precision should grow only
performed simultaneously on al2states in the superposi- logarithmically in the input siz¢1,23).

In addition to the prospects of building a quantum com-

puter, the experimental work stimulated by this field is ex-
*Electronic address: dani@batata.fh.huji.ac.il pected to provide new insights into the foundations of quan-
TElectronic address: biham@flounder fiz.huiji.ac.il tum mechanics, as well as to lead to progress in the
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development of new technologies. Furthermore, the new pemodels is given by a sum over all configurations:
spective that quantum computers provide about the complexz= =g exp(—BH[{s}]), where 8=1/kgT, kg is the Boltz-
ity of algorithms is highly valuable for the theory of compu- mann constant, and is the temperature. For a system in
tation even without the physical construction of such athermodynamic equilibrium, the partition function provides
computer. In particular, Shor’s algorithm for the polynomial the statistical weight of each one of th& 2onfigurations.
time solution of the factorization problefi]| has shown that The statistical weight of the configurati¢s;},i=1,... N, is
problems that are considered intractable on classical compugiven by Prob{s;}]=exp(—8H[{s}])/Z. Therefore, if the
ers may be tractable on a quantum computer, although sonpartition function is known one can obtain exact results for
restrictions are known to be related to the potential power o#ll the thermodynamic quantities such as the magnetization,
a quantum computef23]. Feynman[24] was the first to  susceptibility, and specific heat. Models for which analytical
suggest that quantum computers might be exponentiallgalculations of this type can be performed include a variety
faster than classical computers at simulating quantumef one-dimensional1D) models and the 2D Ising model
mechanical systems with short-range interactions. A generg7]. However, for most systems of interest, including the
demonstration to this effect was given by Lloy25], who 3D Ising model and most Ising spin-glass models, no ana-
also argued that quantum computers could efficiently calculytical calculation of the partition function is availablag].
late spin-spin correlation functions in Ising models. Some The size of the input in computations of Ising spin sys-
explicit algorithms were later proposed for simulating physi-tems is simply the number of spin$ plus the number of
cal systems on quantum computers. These include the SchroondsNg that connect these spins. In models of the short-
dinger equation for interacting many-body syst€i@8-29,  range interaction considered here the number of bonds is of
the Dirac equatioi30], and the quantum baker's m@Bl]. ~ O(N). An exact numerical calculation of the partition func-
In this paper we consider a broad class of statistical phystion or any thermodynamic quantity would involve a sum-
ics problems involving Ising spin systems. We develop ammation over the  terms that appear in the partition func-
algorithm for simulating these systems on a quantum comtion. As the system size increases the computation time
puter. Here we define the Ising spin systems and briefly rewould increase exponentially, and this is obviously not fea-
view the numerical techniques in use for their simulation onsible. In order to obtain thermodynamic averages a variety of
classical computers. These systems are important both agonte Carlo methods have been developed. These methods
models of magnetic phase transitions and as the most usefilvolve a sequential random sampling of the phase space
models for the analytical and numerical studies of phasenoving from one configuration to the next according to a
transitions in general32,33. The numerical simulation of properly designed Markov process. In order to sample all
such systems has been an active field of research for the paginfigurations with the appropriate thermodynamic weights,
five decades since the introduction of the Metropolis algothe Markov process must be able to access the entire phase
rithm [34]. Typically, spin systems are defined on aspace and to satisfy the detailed balance condition
d-dimensional lattice in which there ai¢ spinss;, one at
each lattice sitd, and nearest-neighbor coupling between prok{s})W({s;}—{s;}’')=Prok{s;}" )W({s;}’ —>{s})
spins. The energy of the system is given by the nearest- (1.4
neighbor Edwards-Anderson Hamiltonig36]

where{s;} and{s;}’ are any two states of the system and
2 3 — 2 his 1.3 W({s;}—{s;}') is the transition probability from one state to
an =13 v ' the other in a single move of the Markov procg33]. When
these conditions are satisfied one can use the Monte Carlo
where(i,j) represents summation only over pairs of nearestesults to obtain approximations to thermodynamic quanti-
neighborsJ;; is the coupling betweenandj, andh; is the ties.
local magnetic field. The most commonly studied model is In the most commonly used Metropolis algorithB#], at
the Ising model[36] in which each spin has two states each time step one spin is chosen randomly. The energy
s;=*1. The bonds);; then determine the nature of the in- difference AE that would occur due to flipping the chosen
teractions. In the ordinary ferromagnetantiferromagnetic  spin is calculated. IAE<0 the move is accepted and the
Ising model all bonds satisfyd;j=J (J;;=—J), where spin is flipped. TAE>0 the move is accepted with prob-
J>0. In the +J Ising spin glass there are quenched randonability p=e~#2E. Since this rule satisfies detailed balance,
bonds chosen from a bimodal distribution one can take samples of the configurations during the run to
P(Jij))=pd(J;ij—I)+(1—p)5(J;;+J). The random bonds obtain properties of the equilibrium phases such as magneti-
in the Ising spin glass can also be drawn from a continuougation, susceptibility, correlation function, and correlation
distribution such as the Gaussian distribution. length. Although for large systems it is feasible to scan only
Numerical studies of spin systems have been performedn exponentially small part of the phase space, this part typi-
for a vast variety of lattices including the square and trian-cally has an exponentially large weight and therefore Monte
gular lattices in two dimensions and cubic, hexagonal, andarlo simulations provide good approximations for the ther-
hexagonal closed packed in three dimensions. Here we wilhodynamic quantities.
concentrate mainly on finite hypercubic latticesdirdimen- The Metropolis algorithm and related techniques that in-
sions, which includN=L" sites, wherd_ is the number of volve flipping one spin at a time are efficient as long as the
sites along each edge. Since each spin has two states, theystem is not too close to a critical point, i.e., a second-order
Ising spin systems exhibit an exponentially large phase spagghase transition. Near the critical point the simulation suffers
of 2N configurations. The partition function of Ising-type from a “critical slowing down” and the number of Monte
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Carlo steps needed between uncorrelated configuratioreorrelation function between consecutively measured con-
grows ad_?, wherez is the dynamical critical exponef@3].  figurations[33], measurements on the quantum computer are
The reason for this slow dynamics is that near the criticafotally uncorrelated since the superposition is constructed
point there are large clusters of highly correlated spins. IrRneéw before every measurement. Successwe_ runs of the al-
this situation there is a very small likelihood of flipping an gorithm therefore involve no dynamics of moving from one
entire cluster due to the large energy barrier involved. TgFonfiguration to another. A situation in which this procedure
overcome this difficulty, cluster algorithms were introduced!S eSpecially useful is in the vicinity of a critical point, where
in which entire clusters are flipped at once in a way thafMonte Carlo simulations may suffer from a critical slowing
maintains detailed balan¢a9]. down. While cluster algorithms have been invented for regu-

In addition to the regular lattice spin systems, there ha ar Ising models[39,_49:_|, Wh'Ch essentially solve this prop-
been much interest in the study of disordered systems sucfi™" th(_ey are very I|m|t_ed In scope _and can treat essentially
as frustrated Ising modelg!0,41 and the Ising spin glass only Istlngl sy.stthems. with a per|0d|(|: .bor:g tst_rtuctur?.. Trl[e
[42,43. These systems exhibit competing ferromagnetic and?re(sjen t?g?jnl m 1S (rj‘n(I)re genﬁra dm .3 tlh appgtlas Of
antiferromagnetic interactions. In particular, in plaquettesra.rt'. Olm_l on S(Ijng mo Itesatlﬁ well and avolds the problem o
that include an odd number of antiferromagnetic bonds it i§”-l|-cr? slowing down a c:jge ferli Th ructi fh
not possible to satisfy all the bonds simultaneously and the € paper Is organized as follows. The construction of the
system is thus frustratdd0,41. Spin glasses exhibit a com- superposition of states for the 1D Ising _mode], wnh_quantu_m
plex energy landscape with a large number of metastablBrOba.bIIItIes equa_l to the.therm."dy”am'c weights, IS consld-
states or local minima. Since these minima are separated ed in Sec. l.l' Higher-dimensional Ismg systems including
energy barriers, when the system is simulated using Mont 1€ Bethe lattice and the ZD. af‘d 3'D'Ismg modgls are con-
Carlo methods at low temperatures, it tends to be trappe idered in Sec. . A magnetic field is introduced in Sec. IV.
around one local minimum from which it cannot escape. he conclusions appear in Sec. V.
When the simulation is done at high temperature, the system
can easily switch from the vicinity of one local minimum to II. 1D ISING MODEL
2:1I0tr:]1(iar:irtr)1lljjtrr?ai?snecl)} r?r?]‘gvgptgﬁ):f;ag?S?;Tgtyédre:r?;'et;?ngo' We begin our exposition of the algorithm by treating the

, ; : X ; simple case of a 1D Ising model. Starting from the full

[44] in which the temperature is repeatedly raised and the‘?errcp:magnetic open chain,gwe will graduall)? introduce coni/—
slowly decreased was found useful for obtaining thermOdy'plexity, by considering the antiferromagnetic case, mixed

namic averages. _In particular, It p_rowdes a probab|I|_st|c aI'ferromagnetic-antiferromagnetic models, spin glasses, and fi-
gorithm for exploring the local minima and for searching for nally close the boundary conditions. This last operation,

the ground state of the system. The problem of finding th&,nich enables the use of transfer matrices in the classical

ground state of the short-range 3D Ising spin glass, as well §8,5e allows for a comprehensive treatment of the 2D and
the fully antiferromagnetic 2D Ising model in the presence thigher-dimensional models.

a constant magnetic field, was shown by Barahona to belong

to the class of nondeterministic polynomial tinfldP)-hard

problems, by a mapping to problems in graph thelaty—

48]. The Hamiltonian for a linear, open ferromagnetic system
In this paper we present an algorithm for the study of aof N spinss;= =1 is[50]

class of random-bond Ising spin systems on a quantum com- No1

puter. By use of interference, the algorithm can construct, +

with linear complexity, a lattice with a fixed portion of HN:_J; SiSi+1

plaquettes having predetermined bonds. The bonds connect-

ing plaquettes are determined randomly, with the probabilityyhere J>0. Letye[0,2Y~1] and {s}y be theN-digit bi-

of obtaining a nonfrustrated intermediate plaquette beingyary expansion of usings,=—1 for 0 ands;= +1 for 1.

higher than that of a frustrated one. The superposition proprpe notation{s}" can also denote one of thé' Zpin con-

erty of a quantum computer can be used in order to includgyrations withythermodynamic weight

the entire phase space of the resulting Ising system, such tha? ’

the quantum-mechanical probability of each one of the 2 1 .

states equals the thermodynamic weight of the corresponding Prol{s},]= ZTG_BHN[{S}V] 2.2

spin configuration. In this sense the algorithm is exact. Once N

such a superposition is constructed one can perform a me ; N L o

surement of all spins, which provides one of tHé@nfigu- E}E\(Zé\:lssuveﬁgcerlpt on{s}y will be suppressed where it is

rations. Since the probabilities of the quantum states are or- '

A. Ferromagnetic case

(2.9

dered by the thermodynamic weights of the corresponding N
spin configurations, the partition function is constructed ef- zi=> e~ BHN[{sh] 2.3
ficiently. Putting aside questions of degeneracy, the lower NTYSo '

the energy of the configuration, the more likely it is to be

obtained upon measurement. Therefore, the algorithm can bg the partition function. It is the task of the algorithm to
used to find ground-state configurations of the spin systentalculate exactly the probabilities above in a manner that
Unlike Monte Carlo simulations, which require a minimal allows an easy identification of the configuration whose
number of steps between measurements to reduce the aufmobability was found. To this end we introduce ldrqubit
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register{s}}'=[s;,s,, ... Sn), where nows;= =1 denote x¥ x
the ground and excited states of flle qubit (it is convenient 2 g2 (2.10

to use the same notation for the classical spins and the qubits

and this should not cause any confugiowe term this a

register of “spin qubits.” Let|{—}y) denote the ground Thex’ vs x?’ comes from the fact that i8* we have am-

state of all spin qubits. We seek a unitary operdtgrthat  plitudes, not probabilities.

simulates the Ising model in the sense The operator that simulates the 1D Ising problem can now
be written as

K{s}yI TN = }n)P=Proti{s}].

Thus Ty, evolves the qubit register into a superposition in
which every state uniquely codes for an Ising configuration
of spins, with a quantum probability equal to the thermody-
namic We|ght of that Configuratioﬂfﬁ must be a “valid” ThUST; is ar/2 rotation of the first qult, followed by ISing

quantum computer operator, i.e., it must be decomposab@ntanglements of successive pairs of qubits. This bares some

(2.9

1
.
AL shia

TN = R;. (2.1)

into a product of a polynomialin N) number of one- and resemblance to the procedure using a transfer matrix to solve
the 1D Ising model. The number of required operations is
exactlyN. The general “recipe” for writing down this op-
erator(in the absence of closed logps the following: one
always applies ar/2 rotation to the first qubit and then sub-
stitutes an Ising-entanglement operator for each interacting
pair of nearest-neighbor spins in the Hamiltonian.

It might be helpful to give an example at this point. For an
open chain oN=<4 spins, Table | gives the amplitudes of
four spins, at each stage of the algorithm, as calculated from
Eqg. (2.1)). It is easily verified that the squares of the ampli-
tudes given in columns 4, 5, and 6 agree with the thermody-
namic weightqgiven by Eq.(2.1)] for N=2, 3, and 4 spins,
respectively, with a ferromagnetic interactiofn order to
check, e.g, foN=2, ignore the entries fos; ands,.)

We proceed to prove that; indeed satisfies E¢2.4), by
mathematical induction. Let us consider first the minimal
case N=2 (for N=1 we cannot applyS*). We have
T, =S R;, so that

two-qubit unitary operators onli4]. Such a decomposition
is possible with the following two operators: a one-qubi®
rotation

1
Rils1, ... .S, ...,sN):Edsl, S

—-silsq, ...

and a two-qubit “Ising entanglement”

Silst, - S 8j, -8\

x|
—(X S, ...
\/E 1

+sx8|sy, ... =S SN)), (2.6

where

x=eP? c=

(2.7

N| -

Z; =2 coshipd).

In what follows we will suppress the full register and indi-

cate only the qubits operated on. It is straightforward to

check thatR, andSﬁ are indeed unitary, e.g., by considering
their matrix representations in the basis where = (1,0),
|+>:(011)1 |__>:(1'O’O’0)' |_+>:(0111010)1

1
TSI{—}2>=ESE(I——>+I+—>)

1 TRV T
\/%[(X| ) =X =)

+ (=) =X+ )]

1
|+-)=(0,0,1,0), and+ +)=(0,0,0,1): = > —sxuTs;s,). (212
\/%SI,SZ:il
1/(1 1
R=— 2.9 , _
J2i1 -1 On the other hand, according to E§.2) the thermodynamic
weights of these four states are, respectivedf)/Z;
and e Plzy, e Pz, andePlZ] . These are exactly the
“J ox? 0 0 squares of the above amplitudes. Next, assume by induction
o that Eq.(2.4) holds forT}; , i.e., that
1] X X 0 0
t=— -3 2.
S \/E 0 x X (2.9 N4
0 0o —x' x7? (2.13

It is interesting to note the similarity to the classical 1D
transfer matrix

Tilt-i= 3 Allish),

where
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TABLE I. Amplitudes of register states for a 1D Ising model with up to four spins.

1 2 3 4 5 6
|S1,52,53,54) initial R, s, Sy, "
|[-——-) 1 12 x*1\2¢c x?\2¢ x3\[2¢32
|- ——+) 0 0 0 0 —x’\2¢%?
[——+-) 0 0 0 —11/2¢c —x71y2c%?
|- —++) 0 0 0 0 x12¢%?
|—+—-) 0 0 —x\2c —x"3\2c —x7\2¢3?
=+ —+) 0 0 0 0 X—3J/\/§C3/2
|—++-) 0 0 0 12 x9\2c%2
|—+++) 0 0 0 0 —xy2¢3?
|[+——-) 0 12 x~I\2c 12 x°1\[2¢3?
[+——+) 0 0 0 0 —x7\2c%?
|+—+-) 0 0 0 —x"21\2¢ —x" ¥/ \2¢%2
[+ —++) 0 0 0 0 xY\2¢%?
[++—-) 0 0 —x%2¢ —1i/2¢c —x%[2c¥2
[++—+) 0 0 0 0 X2 \[2¢%2
[+++-) 0 0 0 x¥[\2¢c X \2c3?
[+ 44 4) 0 0 0 0 —x39 2372

1 The statel{s},"*) thus appears with a probability equal to
A =—=x"nlishlg its thermodynamic weight, which completes our proof. A
\/Z useful corollary is the following.
N Corollary 1. Upon a measurement following the execu-
tion of the algorithm, a state appears with a probability equal
In=— H (=si). (2.1 to the thermodynamic weight of the corresponding spin con-

Using this, we must show thay|, , satisfies Eq(2.4) for the
1D Ising model withN+ 1 spins. Now

T§+1|{_}N+1>:Sﬁ,NHTm{_}NH -)

= E Ay N+1|{S}N>| ), (2.19

where the last equality follows from the induction hypoth-

esis. But by definition o5",

N+1|{S}y |

\/E(X‘JSNI{S}S')I =) =X s} +)).

Inserting this into Eq(2.15, we have

2N—1

¢N + 1

T+ — = —eiﬁHN[{s}y]IZ_

N+l|{ }N+l> yZO /Z;l— p
X (@ WIS =)~ WY (SN 1)),

(2.19

The two terms in this sum arise from the two possible states

of [sn+1), SO writing the exponents as exggy. 183/2) and
using Eq.(2.1), we obtain

oN+1_4

T§+1|{_}N+1>: Zo

N+1 _ N+1
——e BHN+1[{5}y]/2|{S}y+ ).

ZNJrl

figuration.

This implies that the present algorithm provides an approxi-
mation to the partition function that converges rapidly in the
number of measurements.

B. Antiferromagnetic case

In the antiferromagnetic case, the Hamiltonian for a lin-
ear, open system df spins is

N—-1
=Ji_21 SiSii1, (2.17)

whereJ>0. To treat this case we define a properly modified
version of the Ising-entanglement operafor:

_ 1 . _ls
Silsi.sp)= ﬁ(xjﬂsi S)Fsx s, =),

(2.18
In matrix form
x7 x0 0
1 -x3 x7 0 0
S =— J -J (2.19
\/E 0 0 X X
0 0 -x7 X

and it is easily checked th&; is unitary. We claim that
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(2.20 Slils; s-}zi(x”isils- s;)+sx7% s, —s;))
’ ij1=12) i 19 j i1 5i))

II |+1 JE

(2.29
simulates the antiferromagnetic “1D Ising model” in the
sense of Eq(z 4) The proof is ent|re|y ana|ogous to the The Unltarlty OfS follows from the Un|tar|ty OBJr and87
ferromagnetic case. First one considers the d¢dse2, for  Let us prove thaTJ simulates the appropriate Ismg problem
which again, by |nduct|on FoN=2 there are two realizations of
the quenched disorded; = =J. Accordingly, there are two
1 Ty's: T, andT, . We have already shown that these opera-
T, {=}2)=—=S(|——)+|+-)) tors solve their corresponding Ising problem. Assume by in-
V2 duction thatTJN simulates the Ising problem faX spins.
1 There are now four possibilities in going b+ 1 since both
=——[(x7==)=xI—+)) Jn-1 andJy can bexJ. In fact, we have already dealt with
V2c the two casesly_;=Jy in proving the algorithm for the
fully ferromagnetic and antiferromagnetic cases. But instead
of considering separately the casés_,#Jy, it will be

more convenient to proceed generally. From the induction
The state probabilities are just the thermodynamic weightg,ypothesis we have

that can be obtained from E(.17) for N=2. Repeating the
induction argument that led to ER.16), one finds here 2N—1

Tl-h= X A,

+ (X + =) =xI+ +))].

o - 1
T _ LSkl A /=
B N

N A=k P, (2.29
X (xN|{SHY =)= xN|{s}  +)) z
2N+l_1 ;
= > N o ﬁHN+1[{s}y]/2|{S}N+1> Now TR, ;= SN N+ 1 TN SO that using Eg(2.24),
y=0 VZni1 - .
N J
2.2 T =0 — —H sl
@2y Teal=hwl= 3, 2o :
This proves thal  simulates the 1D antiferromagnetic Ising X(X—JNSNHS}?I , _>_XJNSN|{S}>I>J +))

model.
ON+1_q

S b s
y=0 VZyi1
We now consider the simplest case of a random-bond (2.26
Ising model with open boundary conditions: the quenched, '

mixed ferromagnetic-antiferromagneti_c Iipear_ ch_a(miso The amplitude squared of the configuration coded 4} +1
known as the+J spin glasg The Hamiltonian in this case s exactly its thermodynamic weight for a given quenched
may be written as disorder J, so this completes the proof for the mixed
N—1 ferromagnetic-antiferromagnetic case. Of course, the fully
_ 2 JiSiSi 11, (2.22 ferromagnetic. and antiferromagnetic cases are specific in-
[ stances of this general model. The implementation of the
algorithm in the present case, according to &423), would
where J=(J;,J,, ... Jy_1) is a fixed set of parameters, entalil using(apart from ther/2 rotation two different op-
each of which can be-J and thus determines whether the €rators in an order dictated by the sequence of ferromagnetic
interaction betweesi and Sit1 is ferromagnetic ﬂ_) or an- or antiferromagnetic bonds in the ISing model one wishes to
tiferromagnetic ). There are a total of 2! J's for the ~ Solve. The complexity, however, remai@gN).
lengthN Ising chain, each of that can be regarded as a dif- The generalization to continuous interactions is straight-
ferent realization of quenched disorder. The operator whictiorward. In this case
simulates the corresponding Ising problem is a natural gen-
eralization ofTy;

C. “1D spin-glass” case

N—-1
=— 21 GisiSi+1, G=(G1,Gy, ... Gy 1),

(2.27

whereG is a set of independent random variables, which do
not have to be identically distributed. Suppose one prepares a
where[51] setG. This corresponds to choosing a certain realization of

sf'wl} Ry, (2.23

nel 11

=N-1
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guenched disorder in the Ising spin glass. The quantum ofN dependent. Additional complications may arise in relation
erator that simulates the thermodynamic weights in this caste the connectivity of the system in higher dimensions. We
is will return to this issue in later sections. In order to be able
L the discuss such systems, the problem of closing the bound-
5| 11 ary conditions must first be discussed. This is done next.
C=
=N-—

S, 1| R (2.29

i 1

D. Closing the boundary conditions
where

It should be remarked that the algorithm as described so
1 far is in fact “classical.” A classical probabilistic computer
—(x~Cisi|s; ,sj)+ijGisi|si v =S)), can run the algorithm with exactly the same efficiency sim-
\/C—i ply by randomly choosing spig; to be up or down with a
probability determined by the thermodynamic weight of the
ci=2coshiBG)). (229 configuration of all othei —1 spins and bonds. The differ-
ence is of course that the classical computer cannot store all
2N spin configurations. However, this by itself does not en-
-G ¢ 0 hance the computing power since only one configuration is
. accessible by measurement of the quantum register. The ef-
x7i 0 0 fective classicality of the algorithm is due to the fact that so
SCi=— 0 0 x~G xG |. (230 far we have only employed superpositions. In Sec. Il F we
‘/C—i G o_G will employ the purely quantum effect of interference in or-
0 0 X X der to deal with the problem of a 1D Ising chain with closed
boundary conditions. Here we introduce the operator re-
The only difference fromS' of the +J spin glass is that Quired for closing a 1D chain. Such a chain has as Hamil-
each Ising entanglement now has its own normalization facionian in the=J spin-glass case
tor, which clearly has no effect on the proof of the algorithm. N
As N increases finite-size effects diminish. By construc- HY=—> JiSiSi+1,
tion, our algorithm will provide irO(N) steps a ground state i=1
{s}* of a 1D spin glass with probability

G;
S/ Isivs)=

In matrix form

p* ZBXFZ(—,BHﬁ[{S}*])/ZS. (2.30) SN+1=S1, J=(J1,d, ... IN)- (2.32

This probability can be made arbitrarily close to 1 by per-a reasonable approach to closing the loop on a quantum

local minimum is found instead of the ground state, the enSJNl afterT,J\‘. However, this does not work since it changes

tire process should be repeated until the ground state is ogN: . .
tained. What is the average number of steps required fo e amplitude ofs,), which was already the correct thermo-

locating theglobal minimum in this manner? After the first dynamic weight. It trns out that a d'ﬁerent approach IS
run one has probabilitp* of having found{s}*. If not, one needed. In;tead of working QB1>, one.has to first introduce
failed with probabilityg=1-p* and then succeeded with a work qubit, sayw), on which the Ising-entanglement op-

probability p*, etc. Clearly the resulting distribution is geo- €ration Is performedsmv. This placegw) in a superposi-
metric and thus the average number of runs until the globaion of up and down states. Closing the loop is then per-
minimum is found is(n)=1/p* [52]. The total number of formed by comparing the state [sf;) to that of the workbit
steps is seen to B®(N)/p* . The question of the complexity (rather than to that ofsy)), which acts effectively as the

of the algorithm for locating a ground state thus boils downfictitious spinsy.. If w=s,, the loop is closed since this

to the scaling ofp* with N. In one dimension this is in fact Ccorresponds tey.;=s;, as it should. However, one is then
trivial: there are exactly two degenerate ground states, rel€ft to wonder what to do ifv=—s;. Instead of discarding
lated bys,— —s;Vi, obtained by simply following along the this possibility as improper, it turns out to be frqltful to adopt
chain and satisfying all bonds. Their energyfis- —NgJ @ more general point of view. As will be shown in £g.38),
(where Ng=N—-1 is the number of bonds so the following interpretation also holds: W =s,, the loop is

p* = exp(BNgJ)/Zy. The temperature appears here as a conclosed ferromagneticallysgn@y) =1]; if w=—s;, the loop

trol parameter: let\ be the difference in potential energy i closed antiferromagneticallysgnQy)=—1]. Since the
between a ground state and the next lowest s{ales Then  SIgn of the interaction is determined randomly, we can only
Eq. (2.3) predicts thatp* will become dominant since specify the absolute value g, hence the notatioS;\, .
p*/p"=exdA/(kgT)]. This indicates that the probability of The comparison operation can be performed by an exclusive
obtaining a ground state can be made arbitrarily close to br (XOR),
[53]. However, this is only true as long as the degeneracy

Oms Of metastable states with energy clagé the order of

the average interaction strendiB@)) to the ground-state en-

ergy remains small in some proper sense. For higher-
dimensional spin glasses, it is well known that this number i©r in matrix form

Xij|Si!Sj>:SiSj|Si!SiSj>! (233)
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0 - 0 chain case, which was proved in Sec. Il C, and include an
1 0 extra state for the workbit. In the calculation to follow, a
_ prime on the summation indicates a sum over all spins ex-
X=|o0 0 -1 0f- (2.34 cepts; and
0 0 1 N
<I>N=(—1)Ni_l_[l S (2.37)
Thus, foIIowingSﬁ]“\‘,l, one applies(,,, ; the combined opera- -
tion defines a new, three-qubit operafb#] Now
J; J;
O Isi s wy=X; w8 0lsi s W) TR = I lw=—1)

1 =0, TRl -)
=—sj\/—_(x|Ji|si|si,sj,—sjw> -

ci 2N-1 & ,
s — Ml N HRIsh -
—wx Pilsi|s; 55, 5,w)). (2.39 QN 1w ;/20 ﬂx NS}y w=~1)
The algorithm for simulating the closed-chain 1D spin glass oN_q
can now be written as = Ci > 17N S;Z)NJX_HF]\J[{S}y]HS}y)
Ny=0
Ti=W T3, (2.36 N

X(XlJN‘5N|W:Sl>+X_|‘]N‘5N|W: _Sl>)
To prove that this formula indeed yields the correct thermo-
dynamic weights, we may employ the result for the open-upon collecting terms with equélv):

2 ,
P2 ZJNE dDN[(x‘HJN[{‘lvszv oSnhl NI [~ 1, L ,SN}y>+X_Hf\I[{1'52' ~oSnhylONIs | — {1, Snhy) | +)
NETY

+(X_H\[lj[{l’52‘ "'VSN}y]X_‘JleNl{]_’Sz, . ,SN}y>+X_Hf\l[{_l’sz ----- SN}y]X\JN|SN|{—1,52, . ’SN}y>)|_>]

2N-1
2 3 _
= 1 ,ﬁN yEZO DX HN[{S}y]|{S}y>(XSN51\JN|| +)+X 5N51\3N|| =)

2N—1
2 J
=V 2N > > ‘I’NX_HN[{S}V]XJNSNSI|{S}y>|Sgr(JN)>

gdy) ¥=0

2N—1
Dy

J
= ef.BHN[{S}y]IZ s Sgr(J ) . (238)
s v=0 \E,\Z |{ }y>| N >

Since the amplitude squared of the stHtg},) is given by  doing so, we note that a useful corollary follows from the

the thermodynamic weight of the corresponding 1D, closedealculation above, given that there was no special importance

chain spin-glass system, we have proved that the algorithito the indices of the spins between which the loop was

that includes a workbit works for closed boundary condi-closed.

tions. Corollary 2. Closing the bond betweeg ands; using
How should one interpret the|Sgn(y))" in the last line ol always produces a superposition with half the states

of Eq. (2.38? The workbit is in the excited or ground state paving probabilities equal to the thermodynamic weight of

according to whether sgd) is positive or negative, respec- the Hamiltonian with a ferromagneti; and the other half
tively. That is, the state of the workbit is determined by ith antiferromagnetid;,

whether the interaction between sp#sandsy is ferromag-

netic or antiferromagnetic. However, in the simulation of . . o
Ising models one is interested in a specific set of bonds, so OW the simplest way of determining the‘IJalst bond sign is to
is necessary to be able to determine the last bond sign. Thgeasure it, following the application dd\ '}, . This irre-

is especially important for higher-dimensional models, whereversible, nonunitary operation collapses the superposition of
every plaquette corresponds to a closed 1D chain. For thigv) while leaving the superposed state of the spin qubits
reason we will present next a detailed analysis of the comintact. It randomly chooses between a ferromagnetic or anti-
plexity associated with generating a single plaquette. Beforéerromagnetic bond connectirgg andsy, i.e., chooses be-
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tween sgndy) = *=1. Measurements are tantamount to clas- Z"LN:(XZJNZ%-f—X_ZJNZjN),
sical operations, so in light of the comment at the beginning

of this section, a measurement as a means of choosing the 0

last bond sign leaves the algorithm in the classical realm. Z91=" e AN, (2.42)
Therefore, it may not come as a surprise that measurements st

will prove to be ineffective as a means of obtaining the desjng this,

sired last bond sign. Instead, one may employ interference in

order to “erase” one of the last bonds and leave only the Zy  xPz+x"2z3,
desired one. In Secs. Il E and Il F we will discuss both pro- 5= = =2350 L 92351 -
cedures in detail. P Iy X TZNEXTZy

(2.43

The “constrained” Hamiltonians, whersy= *s;, can be
E. Measurements as a means of choosing written as

the desired bond sign
N-2

A measurement of the workbit collapses its superposition HQ=— E JiSiSi+1— In 1Sn_ 1SN
into either the ferromagnetic or antiferromagnetic state. As i=1

we now show, which last bond sign has the higher probabil-
ity depends on whether or not the resulting closed chain is
frustrated. From the result of E(R.38 we have for thexJ

g
=HN-1—In-1SN-1S1,

1__1ygJ
spin glass Hy=HN-1+In-1Sn-1S1- (2.44
QPN U=l —) This allows one to break up the constrained partition func-
N.Lw tions in a manner similar to Eq2.41):
2N—1
Py

_pHY,
e BHN[{s}y]/ZHS}y)|sgr(JN)), Z%ZZ e B [{s -3y 15n-150)

sgridy)==*1 y=0 Z‘,\{ {s}

(2.39 5
= > e BHY lisls,—s, J=IN-1)
where 7=(J;,J,, ..., Jy) and|J;|=J. Let us now define {s}
the “partial partition functions”ZJNN, ie., Z,G for a ferro- , ]
magnetic bond betweesy andsy andZy for an antiferro- +% e AHn-alfsls, =gy T+ In-0)
magnetic bond. The relative weight of the ferromagnetic and
antiferromagnetic subspaces can then be expressed as =(xPN-1Z0_ +x Pn-azl ). (2.45

r=23/Zy . Without loss of generality, let us assume from
now on that an antiferromagnetic last bond results in a frusSimilarly,

trated system(i.e., the total number of antiferromagnetic 1 . 0 . 1

bonds is odiland vice versa. Then determines the relative Zn=(XTONTIZG g FXENZZY ). (2.46
probability of obtaining a frustrated or unfrustrated chain as _ . o )

a result of the measurement on the workbit. It is intuitively ON€ may continue to split up the Hamiltonians as in Eq.
clear that the spin configurations of a frustrated system wil(2-44- The general pattern is seen to beS(0<N-3)
generally have a higher energy than those of the correspond-
ing unfrustrated system and one would thus expect to find
Z5>Zy . In one dimension this statement can be made ex-
act, as we now show. Separating the last bond one finds

0 _5(y2IN-n-170 ~23y_no171
ZN-n=2(XTN=NAZy g BXTINIIZN ),

1 _oiy-2Iy_n-170 2171
ZN-n=2(XT TN AZY g B XENTTIZN ).

(2.47)
I 2l-1 s des) Together with the obvious initial condition for a pair of spins
Zy= ygo e FUINTEIITENENR, (240 78=2x2%, z1=2x"2", this defines a recursion relation that
can be solved to yield, for E¢2.42 (N=3),
which can be split into two terms, correspondingstc= sy oN-2  N-1
ands;=—sy: N = 23+ (-pF Ny
1 N Zy XZ(J+2P£113i)k2=:o X NTu(K),
2.4
ZilN: Z’ e*ﬁ(Hf\l[{S}slzsN]*JN) (243
{sin where
+ 2 ' e_B(HrJ\J[{S}Sﬁ*SN]”N) . (24]) "t 42k J
e fuk)= X xd fy(0)=1. (249

i1<iy< - <ip=k

Defining  HR[{s}]=HX[{S}s,~s,]  and  HR[{S}]  The last function generates all possible different sums of the
EHﬂ,[{s}Sl:_SN], we can write this as Ji's. For example, foN=4 we find



3670 DANIEL A. LIDAR AND OFER BIHAM 56

Z5 L] XM X4 x4 xB] + [ x401H32) 4 x40+ 33) 4 3402+ 39)] 4 x [ A1+ I2+39)]
Z;, X X x4 x 5] 4 X XA 32) 1 )37 3] A5 F 380 1 [x A 27 3977

(2.50

It can be checked that this agrees with the result obtainedlone will have to try an average efx* times before suc-
directly from the corresponding Hamiltonians; indeed, Eg.ceeding and this number grows exponentially as the tempera-
(2.48 can be proved to hold by inductid®5]. The impor-  ture is lowered.

tant point about Eq(2.49 is the difference betweesy, and One might be tempted to try to correct a “wrong”
Zy - As can be seen in E€.50), there is an alternating ratio plaquette instead of “discarding” it. However, it turns out
of x* between groups of similar terms i#;; and Zy . that any correction procedure has probability less than 1 of

“Similar terms” here refers to terms with the same numberSucceeding. For example, suppose one is interested in the
of J;'s, enclosed in square brackets in E&.50. Since there ~frustrated case, but the measurement yielded an unfrustrated

is a one-to-one correspondence of this type, we may utiliz&laquette. The problem is then thaf] includes the bondy
the elementary inequality56] with the wrong sign. One could imagine several strategies to
“undo” this, which all start with a new workbitw’. For

k" EiNai a example, one could employ a “biased random walk” proce-
min| —| < cg—<max — (2.5) dure: doe& N ; The h :
Cbi) =N by ure: one redoe€)  ,, measures again, etc. The hope is
that the resulting sum afy’s with random signs will at one
to obtain that point add up to produce the originally desired ferromagnetic

bond. The probability for this to happen is equal to the prob-
4y mal N _ 4 40 4] ability of return of some biased random walk where the bias
min(x™,x" ") =x""< 7= =X =maxx™,x" ™). increases with the distance from the origin. For the unbiased
N (2.52 random walker in one and two dimensions this probability is
1, but the waiting time is infinitf57]. For the biased random

The upper bound is approachedTas 0. To see this, use Eq. Walker the probability of return turns out to be zero. This

(2.48 to express the ratio of unfrustrated to frustrated parti-neans that a “random walker” correction procedure cannot
tion functions as guarantee the desired result, at constant temperature. We are

not aware of any other, more successful procedure. What

+

N1 N about turning a frustrated last bond into an unfrustrated one?
7+ x 2=V () Even this has probability less than 1, as a consideration of a
N _ k=0 (2.53 three-spin system will illustrate. Suppose one chooses
zy 'S ' J,=J,=J and aft i findsJz=—J. O
N 231+ (—1)KHN] 1=J,=J and after measuring/ one findsJ; - One
go X fn(k) might then hope to correct this frustrated system by redoing
Q‘;ilw, . A low-T analysis will suffice to show that this will

Since Jy<<0 results in a frustrated system, whihis odd  not correct the error. At loW the dominant spin configura-
there must be an even number (zero included of ferro-  tion will be that with the lowest energg.,. It is easily
magnetic and an even number of antiferromagnetic bondshecked that botw’ =+ 1 yield E,,;;,= —2J and thus have
among the firsN—1 J;’'s. WhenN is even, there must be an equal probability. The case’=1 corresponds to a ferro-
odd numberk} of ferromagnetic and an even number of magnetic last bond and therefore corrects the Hamiltonian.
antiferromagnetic bonds among the filst-1 J;'s. Now, as  However, in the equally probable opposite case the Hamil-
T—0 the dominant term in both the numerator and denomitonian now includes a last bond of strengtf¥ — 2J. If this
nator of Eq.(2.59 will be the one that has all the positive had been the result of the correction procedure, one would be
Ji's [such a term exists sindg (k) generates all combina- facing a(wrongly) biased random walk again since a new
tions of J;'s]. WhenT is sufficiently low, all other terms measurement would result in eithdy=J or J3=—3J, with
become negligible since they are smaller by at ledst the corresponding,,i,= —J and E,;,= —3J. The latter is
Thus, to understand the lof-behavior of Eq(2.48 it suf-  more probable by a fact@?”?, so the correction fails.

fices to consider that of the dominant terms. As can be seen These arguments show that procedures using only combi-
from the expression fofy(k), k counts how manyl;’s ap-  nations of superposition and measurement, have no control
pear in every term. Thus, for odd the dominant term is over the type of plaquette they generate. In the next subsec-
generated whek=k?* (is even), whereas for evem, the tion we will introduce a procedure that does have this fea-

dominant term results whek=k* (is odd. In both cases ture.
k+N is odd. But this means thaf 2—(—1)*"NJ\] is zero

in the frustrated Jy= —J) case and 4 in the unfrustrated

case. Thus the dominant term in the unfrustrated case is al- After closing the last bond, the quantum register is in a
ways greater by* than that of the frustrated case. This superposition corresponding to a frustrated=(—1) and
proves that the upper bound in EQ.52 is indeed reached unfrustrated w=1) plaquettd Eq. (2.38] (assuming, with-
asT—0. The implication is that an algorithm that attempts out loss of generality, that there is an even number of anti-
to generate frustrated isolated plaquettes by measuremefgrromagnetic bonds among the fitdt- 1 bonds:

F. Using interference to close an isolated plaquette
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|¢>=T‘N7|{—}N>|W= —D)=|y_ )+, (259 lined in Ref.[58], in terms of generalized Euler angles. Since
in our casev andw are real vectors, it suffices to find an
where orthogonalU . The idea is to first rotate so that it coin-

N cides withe, and then solve the easier problem of finding the

12! CH.Ifs transformedJ _ that rotates the transformecinto e, . More
)= \/?,\,7;0 Opx M=) |{s)y) (259 explicitly, suppose one has found an orthogonal ma®i¥
satisfying w=GWe,. Clearly, G® is composed of two
andH .. corresponds tdy= +J. We have intentionally writ-  blocks, an upper blocts’ () and a lower oné,,, thenxn
ten the workbit first, so that in the binary representation ofidentity matrix. The transformed equation is then
the spin configurations by the quantum register, the fitst 2 G®v' =g, , with G?P= (1)U cY and
states corresﬁpond to the frustrated configuratioms: 1) - 2n
and the last 2 correspond to the unfrustrated configurations f— =1y (-1 =
(w=+1). As shown in the preceding subsection, achieving vi=(62)7v=(62) (a"w+ 2 1 v’e’)
control over the plaquette type cannot be done by measure- n
ment alone. However, one may try to employ interference in —_——
order to erase one of the subspaces, thus leaving only the =(0,0,....@_,Upsys--->U2n) (2.57)
desired plaquette type. To see this, consider the wave fungince only the lash+ 1 coordinates o’ are nonzeroa®
tion|) of the quantum register as a vector of lengti?),  is" composed of an upper block ; and a lower block
with the first 2 entries corresponding tay_) and the last G’ @, which we need to find along witls’ ). Having

2" entries corresponding tpy., ). Within each such sub- o, these, the solution can be written as
space, the entries run over all possible spin configurations

y=0,...,2—1. Clearly,(4|¢)=1 by unitarity of T{. We U =M@ 1, (2.58
now seek a new unitary transformatidhsuch that -

i=n+

Following Ref.[58], let us write

1
Usl)y=—=|ips), Zo=(lihs). (256
VzZ.. =1l gi(a), 6®=11 aia), (259

Thus U rotates the superposed quantum register dtaje

into a state representing either the frustrated or the unfruswhere g;(6;) is a rotation byé; in the plane spanned by
trated configurations. That exists is clear since it takes one (g e, ,) of R?":
norm 1 vector into another. Furthermore, it clearly mixes

different spin configurations, i.e., creates interferences. The

problem is to findJ, given that it is a "1 x 2(N* 1) matrix

of coefficients that depend qfi In other words, one needs to

know the Gibbs distribution of the plaquette as input in order 9i(6)= —sing; co, - (260
to find U. This might seem to defeat the purpose of the
algorithm altogether, but not so in view of the need to con-
struct plaquettes with given bonds for the 2D and 3D Ising
problems. In these higher-dimensional cases it is very usefuApplication of G to e, results in the set of equations
to know how to produce small plaquettes of, e.g., three or

li-1
cosd;,  sing;

I2n7i71

four spins, for the triangular and square lattices, respectively. W,=C0_1,

Thus, in these cases, or indeed for any plaquettd epins,

one could calculate in advance the Gibbs distribution, find W,,_1=Sinf,_1C0H,_»,
and use it in the construction of a lattice. We will deal with

the question of “integration” of a plaquette into a lattice in W, _»,=Ssinf,_4Sind,_,coH, _3,

Sec. Ill B. Here we give the generallassical algorithm for
the construction o) for anyN and explicitly solve the cases
N=3,4.
W, =Siné,_4Sinf,_»- - - Sinf,cosY,
1. General construction of N-spin interference operator

Let {e}?",, n=2N, be the standard basis of vectors for W= SIN0n-1SINGy - - - SING,SING, , (.63

R2", with a 1 atpositioni and zeros elsewhere. Consider a
normalized real vector of length 2n (representing #))
and another vectow composed ofv's upper half, also

with the solution k=1,... n—1)

normalized: w=(v{,vs, ...,0,,0,0...,0)la_, where cosﬁk=vk+l,
a_=(Z;-;"v?)Y2 Herew corresponds tdys_). We seek a M
construction by two-qubit operations of a unitary mattx

such thatU v=w [as in Eq.(2.56]. The solution to this sin, = Mk ,

problem is within the theory of generators ®0(n), as out- M+
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j 1/2
=(21 v?‘) . (2.62)

Similarly, the application of 6‘?)~* to e, results in
v, =CoY,,

Uhy 1= SING,COH 11,

Up o= SIN0,SING, 4 1COHp 4 5,

Upn—1=SINBRSING, 1 1+ - - SiNBop_»COHon 1,
U5 =SiNO,SiNGy ¢ 1- - - SiNb,,_5SiNBo, 1,  (2.63
yielding (k=n, ..., 2h—1)
U!
C0$k:_k,
"
r r
sin0k=ﬂ, Sinfy,_1=— k+1,
Mk Mk
2n 1/2
rJ:(E vi'z) . (2.64
=]
The case w=(0,...,0vp41, ... 0o0)a, with

=(=M )2 corresponds tdy, ) and we need to find

an orthogonaU+ such thatU ,v=w. It can be seen by re-
require

peating the arguments above that we now
w=GWe,,;, whence G has I,
and v'=GMv=(vq, ... ,0) satisfies the
transformed  equation v’=G(+2)en+l, where G(f)
=GPUY(GM) ! hasl,_, as its lower block. Writing ac-
cordingly

as its upper block,
Un.ay,0, ...

2n—1

W= 11 e
i=n+1

leads to equations very similar to Eg®.61)—(2.64): one
needs to replace; andv; by v{ everywhere in Eqs(2.61)
and (2.62, as well as allowk to range from 1 tan. In Eq.
(2.63 one should replace; by w;, whereas in Eq(2.64 k
should range from+1 to 2n—1 andv; needs to be re-
placed byv;. With these replacements it follows that the
are identical forU_ and U, , except foré,,, for which
sing, =cos, . The interference matrix is given by

G@{[l 9(6)  (2.69

U,=(G")c?cl. (2.66

This, together with Eqs(2.57) and (2.58, uniquely solves
our problem. It remains to be shown explicitly hdw. can

be written in terms of one- and two-qubit operations on the

original spin-qubit register.

We note that theg;(6;) are identity matrices except for

2X 2 blocks. Consider the representation of the bfeisby
s'={|s;, ..
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differ by asinglequbit flip. In this basis application of each
g;(6;) does not entangle states differing by more than one

qubit, so the correspondirg(¢;) is a single-qubit operator

9i(6)|si=—1)=cos)| —)+sind;| +),

9i(6)]s= (2.67)

The remaining problem is thus seen to be the transformation
from the original “binary” basis{|s;, ... ,s@}i’igl to s

and back. This is easily accomplished by two-qubit opera-
tions using the well-known classical Gray cofg9]. The
Gray-to-binary transformation is accomplished by successive
XORs starting from the last qubfthese differ somewhat
from the definition in Eq.(2.33), hence the different nota-
tion]

+1)=—sing;| — ) +cos;| +).

(2.68

where an extra workbiv, represensy=—1. For example,

for the two successive binarys basis states
|wy,S1,8,S3,84)=|—,—,+,+,+) and|—,+,—,—,—) we
find, after appllcatlon oﬂ'[I oX{it1, |—,—+,—,—) and
|—,+,+,—,—), respectively, which indeed differ by only a
single qubit. Furthermore, clear ',le:xi’,j so the binary-
to-Gray transformation is accomplished by running the same
sequence of XORs in reverse ordstarting from the extra
workbit). We can now finally write down the full interfer-
ence transformation. Let

Xijlsi.sp—lsi.s))=Isi. —sis;),

Xi= H X/ i1 (2.69
and
2N-1 2N+l
6= 1T ai = II ae,
i=1 i:2N
oN+1_q oN
Y= II o), G2?=I1 gi(6). (@70
i=2N+1 =1

The inverse operators are obtained by reversing the order of
the products and negating all angles. Then

(W -y =X FGPED(GL) " IX{ | wy) | ¥),
(W) i, Y =Xy HEXM) LGP LG IX[ w4
(2.71

expresses the interference transformation leaving only the
register states corresponding to frustrated or unfrustrated
spin configurations.

2. Solution for the N=3,4 spin system

We now employ the above formalism in order to explic-
itly solve for the interference transformations of the three-
and four-spin systems, corresponding to the elementary cells
of the triangular and square lattices, respectively. First it
should be noted that for the J model in one dimension, for

SN>} y O , Where the successive register statesa closed Ising chain of given length, the spectra of all frus-



56 SIMULATING ISING SPIN GLASSES ON A QUANTUM ...

3673

trated realizations of bond choices are identical and so arperposition of] into a ferromagnetic and antiferromagnetic
the spectra of all unfrustrated realizations. To see this, corbond will represent all other unfrustrated and frustrated bond
sider a specific spin configuration and realization of bondsealizations, respectively. The solution of Eq2.62 and

with energyE and suppose one changes the sign of somé¢2.64) yields the following result for the transformation from
arbitrary pair of bondsJ,,,J,,, m<n. This operation does the superposition to the frustrated or unfrustrated subspaces.
not change the frustration of the chain since this is deterket

mined by the parity of antiferromagnetic bonds. But by flip-

ping all spinss;,; 1, - - . ,S, once again the energy 5 since 43k

the flipping ofs,, ., ands, undoes the change in sign &, frim= X—,
and J,,, respectively, and all other spin flips occur in pairs T m®
that share a bond and thus cancel. So for every spin configu-

ration and choice of bonds there is another spin configuration NZAL

with the same energy in a realization with the same frustra- he i mn= —mm—s.

tion but different bonds. Clearly, the mapping above is one S Mt

to one, so that indeed the spectrum is identical for all bond

realizations with the same frustration. Returning to theThen, writing C=cos, the angles can be expressed as fol-
N=3,4 spin systems, we are at liberty to consider, e.g., théows:

case where all bonds but the last are ferromagnetic. The su-

(2.72

N=3:
Cglzi ngz_i CO3=—fo13 COs=f114  COs=f115 ClO=—f116 CO=—Topop
V2 1 1\/§
Clps= — = Chy= = COz=f113 Cl1=—Fos1 COL=—Tos51 CO0=fos1 Clo=f16,
14 x4y 372
Chg = ( ; ) sindg
01,3
N=4:
Co,= 1 Co,= 1
Y2 SN
CO3=—hp130 COs=h1140
C05: h0’2 4.0 Caﬁz - h0,3.4,0 C67: - h0,414,0
Clg=—hyi450 Cly=—h1460 CO1p=h1470
Co11=hos70 Cl1=—hi580
Cb13= —hggso CO14=ho780 Cti5=hogso
sindg=[ho,16{1+x*)?] 71 =Co1;
CO17=—hy5125 Clig=—hi1p121

Clr9=h12111

CO=hy161

CO=h12101

COy=—h1591 COxp=—hyy81 Clx=his71 COy=hgrp1

COx=h1160 Cly=—hy150 Clp=—h1140 Clxp=hi130 Clzp=hy1150 COz33=—hy119

The regularity and similarity between terms in the same colthe plaquette size and independent of the temperature. We
umn (co%} ,cogwith i + j=16) forN=3 is noteworthy. For ~are now finally ready to discuss more interesting Ising mod-
the four-spin system there is a similarity between terms irels in two dimensions and above.

the same row, but we find a less regular solution. Let us
remind the reader at this point of the motivation for intro-
ducing the above transformations. We showed in Sec. Il E
that the average number of attempts needed to generate aThe 1D lIsing spin glass is rather trivial and the more
plaquette of given type using only superpositions and ndnteresting models are the higher-dimensional ones, where
interference grows as™”=exp(2/kgT) with the temperature. connectivity plays an important role. As an introduction to
Using the interference transformations, the cosD{d) in  the schemes we will need to employ in dealing with the 2D

Ill. HIGHER-DIMENSIONAL ISING MODELS
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and 3D cases, consider first the “infinite-dimensional” Be- 1 2K
the lattice, which has no closed loops. TC= 1;[ H S(k L. | R - (3.2

A. Bethe lattice case

Consider a binary Bethe lattice, i.e., with spins located ain order to prove thafx correctly calculates the probabili-
the vertices of a binary treg-ig. 1). The spin glass Hamil- ties of the spin-glass Ising model on the Bethe tree, we need
tonian for aK-level deep tree can be written as to show thai(l) it does not matter in which order we connect

the spins occupying vertices one level deeper than their com-
K 2 mon originator andll) a 1D chain that splits at its end into
- . S . 1) two branches is correctly describdd). allows us to perform
21 121 G- S-S - (31 the first branching in the trdérom spin (0,1) and(Il) [com-
bined with(l)] allows us to build up the tree recursively from
According to the general recipe of Sec. Il A, the quantumany existing end point. In particular, the order described in
operator for calculating the weights of configurations in thisEq. (3. 2) will be valid. Starting with(l), we need to show
system is(for simplicity of notation we shall suppress the that [S;; S S31=0 (the indicesi,j,k are shorthand for the
indices onG where they are already indicated By double indices employed aboveNow

Ciksil s; ,Sj ,Si) + S XCiKSi| s, i~ Sl

SHESHERS :Sk>:isij[X7
Veik

= {x~Cisi[x~ Cijsi|g, S, ,sk>+SjXGiJsi|Si = Sj,SK)] + 5, xCikS

VGijCik

X[x~Ciisl]s; ,s;, =50+ 5,x%%s, =57, — s}

= — [x’(Gik+Gij)Si|Si 1S ,Sk>-l-SJ-X(Gij*Gik)Si|si V= S] ,sk>+st(Gikaij)si|Si s, —s0)
VVij ik

+SijX(Gik+Gij)Si|si ,— S| ,— S (3.3

On the other hand, by exchangipgandk everywhere in the last line, we obtain

Si 5118 5= [x (G Cwsi|s;, 5y ,5)) + 5x Gk Ci)si|s;, — 5, 57) + 5;x( il ~CklSH| 5,5, — )

CikGCij
+Sjskx(Gij+Gik)Si|Si I_Sk'_sj>]' (34)

The order of the qubits in the kets is immaterial, so that by comparing the two results we find that indeed

[S5.Sk]1=0. (3.5

This is indicated graphically in Fig.(8. Next we prove(ll) above, namely, thaBg . »S% n+ 1 TRIL— I = Inal = Ine2

[where, due to Eq(3.5), we may exchange the orderﬁﬁ N4 2 andSN n+1] Yields the correct thermodynamic weight for the
Hamiltonian

N—1
H= 21 Gii+1SiSi+11 Gnn+1SnSN+1T Gnyn+ 2SNSN+2- (3.6
I:

Using the results of Eq$2.25 and (3.3) we have
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SS,N+ZSS,N+1TS|{_}N>|_>N+1| _>N+2

N

2N—1
G _
= ygo ARSS,N+2SS,N+1|YN>|_F>

2N-1
:;E AG—|ﬂ>(X*SN(GN,N+1+GN,N+2)|_,_>_XSN(GN,N+1*GN,N+2)|+,_>
VenN+2CNN+1Y=0 N
_XSN(GN,N+2*GN,N+1)|_,+>+X3N(GN,N+1+GN,N+2)|+,+>)
N+1_
1 2 1

_ G G SNSN+ 1+ G SNS e
A O L

VCN,N+2CN,N+1 Y0

2N+171

1 —
- _e*ﬁ(Hﬁ[{S}yl*GN+1SNSN+1*GN+2SN5N+2)|yN+2>, 3.7

>
VON,N+2CN,N+1 ¥Y=0 \Eﬁ

which is the desired result. It should be noted that sincdowering the temperature one can increase the probability of

[sﬁ,s;”;]:o, any number ofS operators with a common generating only unfrustrated plaquettes connecting the pre-

starting pointi will commute in pairs. Therefore, there is fabricated ones. For example, choosing prefabricated unfrus-

nothing special about the binary Bethe tree and we cairated plaquettes will generate low-temperature simulations

equally well apply our algorithm, after a proper modification of unfrustrated Ising models with very few defects. That is, if

of Eq. (3.2), to a Bethe tree with any kind of branching. N4 denotes the number of defegie., frustratedl plaquettes,
then

B. 2D Ising model Ng

) ) — ~xH, (3.9
As was demonstrated in the 1D case, the key to being able N

to close loops is the creation of a superpositiobamdspace

by using a workbit whose state is compared with the spin

with which the loop is closed. Choosing a specific bond signVe turn next to demonstrating how isolated plaquettes can
is then accomplished by an interference transformation thate connected together to form a lattice.

eliminates one of the bond subspaces. We now extend these

ideas in order to present an algorithm for simulating 2D Ising

spin systems. Ideally, one would like to have an algorithm

that can exactly calculate the thermodynamic weights of an 1. Allowed algorithms

arbitrary given spin-glass Hamiltonian “Hooking up” isolated plaquettes will require connecting

spins by() operators, all of which will eventually have to
share lattice points in pair®r more, as shown in Fig. 3.
Corollary 2 ensures that bonds can always be closed @sing
S0 as to produce the correct superposition. Since the order in
which the lattice is constructed might appear to be important,
the question of commutation of the various operators natu-
However, since the interference transformations introducedally arises. In this section we will deal with this in some
in the 1D case require as input the thermodynamic weightgjetail. As for pairs of) operators, all possible combinations
we cannot hope to deal with an arbitrary Hamiltonian. In-commute[see Fig. 20), (I)—(IV)]:

stead, as will be shown here, the class of spin glasses that can

be dealt with by the present algorithm is that with predeter-

mined plaquettes of finite size. In other words, by using in- 9] 97— 9] 9]

terfence transformations one can construigolated (250, P, 1= 0, T, i, 1 =0,

plaquettes of any desiredinite) size and compositioriof ] 1l 1l 1l

bonds and these plaquettes can then be connected together. [Qfw,  Qjw,1=0, [Q, Qi 1=0. (3.10
This creates new plaquettes, with random bond signs. Thus

the algorithm cannot provide complete control over the bond

composition of the Ising model it is used to simulate, but theWe demonstrate the calculation required to prove the first of
resulting class of partially-random-bond systems is higge  these relationgwe drop the normalization factors and set
ponentially large in the number of bond&urthermore, by J=1 for notational simplicity:

H:_<Z> ‘JijSiSj! |J|J|:J (38)
7}
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31 k
(@ .
I
3.2) i
I 0} K
(3.3) L VL SR .
® . 1.0,
....... | S Kessawnnu |
2,2) 3,4 . i jrecongmmk
(0,1) 1 )
23 35) © ? 0 f ) w o -
jfames -k i gparnank i | —
(3,6) d j N TTTrH k
(3,7 @ ?
1
j
(3,8) R4
. . , (€) ik
FIG. 1. Scheme for numbering vertices on the binary Bethe tree, &
used in the Hamiltonian of Eq3.1). !
FIG. 2. All possible commutation relations &f (full arrows)
ijwzﬂijwl|si ,Sj 1Sk, W1, Wo) andQ) (dashed arrows (@) [S;;,S]=0 (needed for the Bethe lat-
. tice). (b) (1)=(VI) All combinations of() operators commutgc)
:ijwz[_sj(xs'|si +Sj +Sk» — SjW1,Wp) The commuting combinations & and Q: (1) [S;j , Q] =0, (I1)
s [Sij . Quiwl=0, () [S;j . Qjw]=0, and (V1) [S; . Qyw]=0. (d)
— WX Si[s; 1Sj :SkaSjW1,W2>)] The noncommuting combination & and Q. (e) Additional com-
s +s muting combinations needed in four dimensions and higher.
=S Sj[ X iIs; 'S} 1Sk, — SjW1, — SWy)
Csts J
—WoX 58S ,S), S, — SjW1, SWo) [S], Qs s) sc.w)
— W X5 8|S ,S; S, SiWq, — S Wy) 1
e = x5 (*%+wx )5, — 5,8,
+WiWox S Si[s) ), Sy, SjW1,SW))], CiCk
X[|sjw) —|—s;w)]. (3.12
whereas, on the other hand,
We demonstrate this, again takidg=1 and dropping nor-
malization:
Qijwlﬂjsz|si ,Sj 1Sk, W1, Wa)
= Qjj, [ = SK(Xs; 18} .S, W1, = SWo) DijuSilsi 5 5c.W)
—WoX " ¥IS;,§j, Sy, Wy, S W2))] = Qgul XSS ,5),8¢,W) + 5;%% s, — 57,5, W)]
:SjSk[XSi+sj|Si ,Sj Sk » _SJ'W:L,_SkW2> = _Sj(XSkisi|Si ,Sj Sk s _SJ'W>
— WX 57,8, 5, SjWq, — SWop) —Wx % 8[s;,5;, Sy, SW) + 5, X% S|, — 51,5, S W)
—Wox5 S|, S, Sy, — SjWq,SWp) —wsx~ TS|, —s; 5, — S;W)),

s
+WWoX S Si[s) ), Sy, SjW1,SW))]. whereas
It can be verified that the last lines in these two calculations  S;;Qyj,|Si ,Sj .Sk, W)= —5;S;;[x*|s; 5] S, — S;W)
are identical, proving the first commutation relation. Next we
consider combinations @& and(). They all commute except
one: _ —s+
=—s;[x 5"%s;,5;,5¢,— 5;W)

— WX %s;,s;,8,5W)]

S +S
+SjX' k|Si,_Sj,Sk,_SjW>

[S] ikl =0. [S].Qku]=0,

_WX_Si_sk|Si ,Sj ,Sk,SjW>

[S|]] ,QH‘W]ZO, [S] "Q’%‘Iilw]! (31:0 —WSjXSi_Sk|Si ,—Sj ,Sk,SjW>],
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which is different from the previous result in the second and
fourth terms. The reason that the relation in E2j12 does

not commute is that onl{);,S; produces the right result.

In the opposite order the same problem arises as when one
tries to close a loop witts's only. This relation is depicted
graphically in Fig. 2d). Given the commutation relations in
Egs.(3.10 and(3.11) one is essentially free to connect the
isolated plaquettes in any order, as we prove next.

2. Proof of the algorithm

For simplicity we consider the case of a square lattice,
where one has prepared a set of 2 plaquettes and placed
them with equal spacing on ahx M lattice (Fig. 3). Denote
the Hamiltonian for this system blyif). Clearly, the maxi-
mum density of nonoverlapping prefabricatedx 2
plaquettes that can be achieved is 1/4. This can be increased
by using larger plaquettes, at the price of increasing com-
plexity in their fabrication. The problem is now to connect N-1 N
plaquettes; from corollary 2 this can be done withopera-
tors that Con_nec_t twoccupl_edlattlce points. The geomet_rles [ferromagnetic (+), ferromagnetic, antiferromagnetic—(] and
that may arise in connecting plaquettgs are summarized | osing with . This is followed by an interference transformation
Figs. 2b)—2(d). The commutation relations of Sec. 1B 1 . erases the antiferromagnetic subspace, leaving in this case a
show that the only problem can arise in the geometry degsirated £) plaguette (b) A lattice with full density of prefabri-
picted in Fig. 2d). However, as long a8 is appliedbefore  cateq plaquettetsome unfrustrated), connected by operators
(), the outcome is a correct superposition providefFig.  (dashed arrows before measurement of the bonds. In this case all
2(d)] is the index of an occupied site. The commutation re-vertical bonds are present and the lattice is diluted in the horizontal
lations ensure that in any order in which theés are applied bonds.
the lattice is generated correctly. We may thus assume that
some arbitrary sequence 6f’s has been applied. We as- the set{(n,m)}«, in any order, and similarly for the hori-
sume further that workbits corresponding to new bonds areontal bondgguaranteed to be correct due to the commuta-
measured after application ¥, so that they are no longer in tion relations. Since the measurements have taken place, the
a superposition and a bond with random sign has becomgorkbits are no longer in a superposition aff%( K" has

integrated into the lattice. It will then suffice to prove that poap applied. Therefore, the induction hypothesis is
introducing a bond at an arbitrary location in the existing ’

FIG. 3. (a) Preparation of a single plagquette by th@eperators

lattice produces the correct superposition. Let us proceed by NM_y
induction and assume that some partial set of all bonds has 7 =Y =1 = 2
been closed by the algorithm. These bonds can be either (KK NM KK y=0 77 |
horizontal or vertical and for definiteness we will assume (6K
that they are always closed rightward or upward. Let us de- Xe*BH(JK,m“S}y]/zl{s} ).
note the set oK vertical bonds by{(n,m)}x and theK’ y
horizontal bonds by{(n’,m’)}«.. The Hamiltonian for this (3.19
setis To see this it is helpful to consider for a moment the situa-
3 3 tion that would arise without the intermediate measurements:
Hik)= Ho+{(n2m)} J(n,m)Sn,mSnm+1 for every new(horizontal or verticalbond|J,, | one closes,
K one needs to introduce a new workli, ,,. A total of
, K+K’ bonds thus requires a workbit registér}« . /) as
+ E Iy SnmSreims 313 gpove. After|J, .| is closed, the workbit is in a superposi-
{n"mO tion of states corresponding to sdq(,) == 1. This super-
with a corresponding operator position is destroyed after the measurements, leaving the
spin qubits’ superposition intact. This is the content of Eq.
TJ = M Q|J(n,m)‘ (315) . . . . .
(K,K')_{(n’m)}K [ Wi m (n,m)(n,m+1)wn’m] The induction proof now requires showing that closing an

additional bond, say\]p'q|, produces the correct superposi-
Y- ; tion [60]. The calculation is essentially identical to that of
X H (Mu, o s 1w, A T0- Eq. (2.38. It is easily checked thati) this calculation is
{n"m%c ' o insensitive to whethefJ, 4| corresponds to a horizontal or
(3.149  vertical bond andii) the appearance of a double index for
every spin does not make any difference. There is thus no
HereM,, represents the measurement of workbift, m).  need to repeat the calculation of £8.38 and we conclude
The notatiorﬂ{(n,m)}K implies a product over all members of the 2D algorithm to be proved.
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It should be noted that every intermediate stage in the C. 3D Ising model
construction of the full 2D lattice corresponds tadiuted Three-dimensional Ising models are notoriously difficult
2D lattice, with bonds specified deterministically by and _both analytically and computationally. In particular, whereas
other bonds being either ferromagnetic or antiferromagnetig large number of 2D models have yielded to analy§ds
depending on the res'ult of measuring the wprkblts. Thus 'bnly very few 3D systems have been solved analytically
follows that the algorlthm can be used to simulate d|IUteCt62_6a Even so, all these models suffer from various short-

Ising models as well, with the same restrictions applying t0comings, such as having negative Boltzmann weifs63
the generality of the class of these models as specified abovgy being essentially 2D[64,65. Computationally, the

i.e., the size of frustrated plaquettes must be finite. plagues of two dimensions are of course multiplied in three
_ dimensions, making our knowledge of 3D systems limited.
3. Control of bond sign Moreover, there are good reasons to suspect that calculations

One may wonder whether the lack of control over thein three dimensions artundamentallyharder than in two
bond sign is special to the essentially 1D situation of closingflimensions. For example, some 3D problems, such as find-
an isolated plaquette. In fact, the same problem arises whetd the spin-glass ground state, are known to be NP hard
ever a bond is closed usin@, as we argue next. Let us [45,46,48. This is related to the existence of a freezing tran-
Suppose that the a|gorithm has Correct|y produced thémon a.tTC>0 in three dimensions, in contrast to two dimen'
thermodynamic ~ weights ~ of  the  Hamiltonian Sions, whereT,=0 [66]. Physically, this means that for
Ho=—2 ;,Ji;Sis; , describingpart of the full 2D problem T<T. the system can get s?uck in a local minimum in three
and excluding in particular the bonk,,. Associated with dimensiongergodicity breakingand never reach the ground
Ho is a partition functionZy=3qexp(BHd{s}]). Let state. Thus it is extremely important to develop efficient al-
Prnm=Proli sgn{,,) = 1] be the probability of a ferromag- 9orithms for 3D systems. Let us now describe the extension
netic bond andy,=Prolfsgn@d,,) = — 1] that of an anti- o three dimensions of the 2D algorithm presented in the Sec.
ferromagnetic bond. When the new bal, is included, we Il B-
have for the ratio of these probabilities _ . : :

Algorithm for three and higher dimensions

The algorithm for the 3D case is a natural extension of

> e AHolisl gBlInmisnsm that for two dimensions and presents no essentially new
Pom _ _fst _ (3.16 problems. One can either prepare 2D plaquettes and stack
Unm S e AHolsH g Alnmisnom planes connected b2 operators or prefabricate 3D cubes
5 (using the methods of Sec. 1) &nd connect those witf)'s.

In both cases corollary 2 and the commutation properties of
This expression can be bounded from above and below bgpe Q) operators guarantee that_the correct superposition is
replacings, s in expE Bldnis:sy) by +1 or —1: produced, and the order in which pla_quettes or cub_es are
hooked up does not matter. The only different feature is that
more than two bonds can now emanate from the same site
e~ nm > @7 BHOl{SII< D' g~ AHolisH g~ AlInnisnsm (for a cubic lattice. However, these present no problem
{s} {s} (3.17) since the algorithm is invariant to the order of creation of
' such bonds, as they all commute in pairs. In other words, the
induction proof for the 2D case holds here as well and the 3D

> e AHolisllgBlanmisnsm< gBlInm D' @ AHolisH algorithm is proved. Clearly, also the complexity remains the
{s} {s} same, namelyO(N), as long as random bonds between
. o ) plaquettes are allowed. Moreover, the same argument holds
Inserting this into Eq(3.16) yields for any dimensional Ising system.
A< POm__ala ol (318 IV. INCLUDING A MAGNETIC FIELD

Anm In this final section we show how the present algorithm

can be extended in order to deal with the Ising model in the

This result is very similar to that obtained in the 1D case, Eqpresence of a magnetic field. The idea is to generalize the

(2.52), and although we cannot perform an explicit calcula-basicR andS operators introduced in the 1D case. Let

tion here, the implications are likely to be the same. Namely,

that the upper bound is approachedTas 0 so that a frus- A

trated plaquette becomes exp@ less likely than an unfrus- Rils)=—"==

trated one. The main difference compared to the 1D case i nd ve

that now closing a single bond},,, may correspond to clos-

ing several plaquettes at once, which can only amplify thes’i -4i|s; 'Sj)

effect. Thus the issue of control of the bond sign is even

(S8 =) —gx7SAi[+)) (4.

more problematic in two dimensions and above. Neverthe- 1 (IS +A S A;

. . . = (x (J|S|+AJ)|S. S.>+5.XJ|S|+AJ|S. _S'>)
less, since isolated plaquettes can be “prefabricated,” the Y RN j i 95/)
algorithm covers an exponentially large class of Ising mod- S

els, as argued above. (4.2
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JiAit1
n *—) : 4.9

where: c
s hi=4i— o4l ( K[V
¢ =2 coslip(Ji+siA))]. (4.3 Friel

It is easily checked tha®'" andS” +4i are unitary. The loop- Whence theN-spin Hamiltonian for aropen 1D chain be-
closing operatof) can be generalized accordingly: comes

9L 1ay _y iy
O 188 W)=X WS, s 85, w)

— ;1 JisiSit1— Zl hisi— AnSy - (4.9

:—J(XlJi|Si+|Aj||Si ’Sj ,_SJ‘W> ) ) )

[PiTTA; Note thath; can take any value for a given choice of finite

Si and B8 by tuning the parametets; ,A;, ;. To prove that the
—wx~ilsi*lAD|s; s sw)). (4.4  algorithm simulates an Ising model with the Hamiltonian of

i1Sj,SjW)). . S ! 1
Eq. (4.9 we proceed by induction. Assuming
A. Open-chain case 1 N_p
In order to introduce an arbitrary magnetic field on every  [] gl +|l+1RA1|{ )= oy E DX N[{S}y]|{s} ),
spin in an open-chain geometry, consider the effect of apply- i=N-1 "

ing R andS on a two-qubit register:

S‘Jl A2RA1| >

H [C‘i’AiHCii!AHl]flM (4.10

\/—0+A_:

[where ¢y is defined in Eq(2.14)], consider

1 2 -5,
= \/CO,AlsLSZ \/CJl,AZ
+ S1

omitting some intermediate lines of by now familiar algebra. ﬁ
The coupling ofA; to thes; in the exponent is like that of a
magnetic field. However, the normalization factor also de-
pends ors;, so it needs to be considered as well:

X315152+A151+A232|31,32>1 (4.9

i A
SR )

2N-1
o
=y X, ¢nx NS, L SN-1)y)
y=0
Incg*A:%[In(eﬁ(”A)Jre*ﬁ(”A))JrIn(eﬁ(J*A)Jre’B(J’A))]

A
X SNNN+N1+1|SN =)

S 2N+171
+=[In(ePITA) 4 g AUITA) o

2 = wN+1 ygo DN+ 1X HN”[{S}V]|{S}y>: (4.1
n(ePI-4) 4 g BU-1))]

where we used Eqg4.2) and (4.6)—(4.8). This proves the

1 . .
=§In(4 coshiB(J+A)]coshi B(J—A)]) algorithm for the open-chain case.
(COSF[,[B(J+A)] B. Closed-chain case
A n WA’ 1 AN 1 - .
2"\ coshh B(J—A)] The algorithm for the closed-chain geometry takes a

somewhat different form. Instead of applyivﬁ{fl one ap-
plies an ordinaryr/2 rotation on the first qubit, and closes
1 the loop withQ‘,\ff\k‘Al‘ . This results, as usual, in a superpo-
\/CT’& =exp( — =Inc ) sition of ferromagnetic and antiferromagnetic last bonds, but
S

also of positive and negative fields sp. To see this, con-
sider

so that

—[chAc A] V4~ (12B)sin(cIAret: A) (4.6)

1
Collecting the exponents of in Egs.(4.5) and(4.6) we find lpy= 1T S|]‘|+'1+1R1|{ )
for the two-qubit Hamiltonian =N-1

3A N-1 2N-1
1 C+1’ 1+l — H [CJiﬁAHlCJi vAi+1]—l/42 b X—H,'\‘[{s}y]| S
Al_ﬁln(m Sl_AZSZ- (47) - + y=0 N { }y>

o__
Hy=—J18:8,— iy

(4.12
This suggests that in general the magnetic field on $pin
simulated by the algorithm takes the form where
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N-1 N-1 the Markov process used in the transfer matrix formalism.
Hy=— E JiSiSi+1— E hisi+(1/23)In(c11'A2/ciJl'A2) Closing loops can be done by repeated measurements, re-
=1 =2 quiring ~exp(4BJ) attempts per frustrated plaquette. A cru-
cial stage in the present algorithm, which leads to a polyno-
mial increase in efficiency over algorithms based on
When we now introduce a workbit and apfy, we find, =~ measurements alone is the use of an interference transforma-

_ANSN .

after a calculation similar to Eq2.39), tion. This transformation eliminates part of the superposition
and thus determines whether the given plaguette will close in
QI,\JIE‘JV’IMH Pylw=—) a frustrated or unfrustrated configuration. This is done in one

step compared to~exp(43J) attempts per frustrated
plaguette in algorithms based on measurements alone. A cen-
tral feature of the algorithm is that the quantum probability
of each state in the superposition is exactly equal to the ther-
N1 modynamic weight of the corresponding configuration.
X > d)Nx‘Hﬁn[{S}y1|{s}y)|w), (4.13  When a measurement is performed, it causes the superposi-
w=*1 y=0 tion to collapse into a single state. The probabilities of mea-
suring states are ordered by the energies of the corresponding
spin configurations, with the ground state having the highest
N N probability. Therefore, statistical averages needed for calcu-
HE=— E JiSiSi 1~ E h;s; . (4.14 lations of thermodynamic quantities obtained from the parti-
i=1 i=1 tion function are approximated in the fastest converging or-
c _— _der in the number of measurements. Unlike Monte Carlo
N IS seen to be the corre_ct Hamiltonian for a closed Ipop "Nsimulations on a classical computer, consecutive measure-
the presence of the local fieltts. The sum ovew==x11in  ani5 on a quantum computer are totally uncorrelated.
EQ.(4.13 is such thav=sgrly=sgm, so that, indeed, the g 5ig0rithm applies to a large class of Ising systems,
algorithm produces a superposition over bond and fielgnq,ging partially frustrated models. A magnetic field can be

signs. Selecting a particular sign can be done with the i”terl'ncorporated as well without increase in the complexity,

ference method of Sec. Il F, and the plaquette thus generatgghich, s linear in the number of spins and bonds. The main
can be integrated into a higher-dimensional lattice. A bongyropiem of the algorithm is the limited control it offers in the
connecting plaquettes should not have to include a field term,niryction of aspecificrealization of bonds on the Ising
since it presumably connects sp_lns_that already have a f_'elﬁttice. An attempt to contrall the bondgand not only the

on them from the plaquette fabrication stage. Thus the Situs etapricated ongsy repeating measurements may result in
ation in terms of controlling the introduction of a magnetic 5 exponential slowdown in performance as the temperature
field is better than that of the bonds: arbitrary fields can bgs oyered and for this reason the algorithm fails to address
generated by the algorithm with full control over the field at o question of whether polynomial tinf®) equals NP on a
every lattice point. It is interesting to point out in this context 4 ,antum computer, in the context of finding the spin-glass
that it is known that the 20ully antiferromagneticising  groung state. In summary, this paper provides tools for the
model with equal interactions, in the presence aoastant  jnlation of Ising spin systems on a quantum computer, as

— =

Ji A J A _
[CJ '+1C+' |+1] 1/4

=1

I+

whereAy, 1=Aq,

magnetic field, is a NP-hard problejss]. efficiently as the best classical algorithms. Work employing
these tools to achieve speedup over classical algorithms is in
V. CONCLUSIONS AND OUTLOOK progress.

To conclude, we have introduced an approach to the nu-
merical study of statistical mechanics of Ising spin systems
on quantum computers. The approach consists of an algo- We would like to thank Dorit Aharonov, Nir Barnea, Eli
rithm that allows one to construct a superposition of qubitBiham, Benny Gerber, Guy Shinar, Haim Sompolinsky, and
states such that each state uniquely codes for a single cobbmesh Vazirani for useful discussions and Robert Griffiths,
figuration of Ising spins. Some stages of the algorithm, suctMichael Ben-Or, and David DiVincenzo for comments on an
as the construction of the open 1D chain, are equivalent tearlier version of the manuscript.
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