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Simulating Ising spin glasses on a quantum computer
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A linear-time algorithm is presented for the construction of the Gibbs distribution of configurations in the
Ising model, on a quantum computer. The algorithm is designed so that each run provides one configuration
with a quantum probability equal to the corresponding thermodynamic weight. The partition function is thus
approximated efficiently. The algorithm neither suffers from critical slowing down nor gets stuck in local
minima. The algorithm can be applied in any dimension, to a class of spin-glass Ising models with a finite
portion of frustrated plaquettes, diluted Ising models, and models with a magnetic field.
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I. INTRODUCTION

The algorithm of Shor@1# for the polynomial time solu-
tion of the factorization problem on a quantum computer w
received with much excitement in the computer science
physics communities@2,3#. It indicates that quantum compu
ers have a potential for the effective solution of proble
that are unfeasible on a classical computer. The actual u
zation of this potential would require, in addition to man
years of work on the hardware, the development of al
rithms that would optimally exploit the strengths while ove
coming the shortcomings of quantum computers, in parti
lar the problem of decoherence@4,5#. Unlike classical
computers in which each bit is a two-state system that ca
in either state 0 or 1, the quantum bit~or qubit! can be in any
superposition of the form

uc&5a0u0&1a1u1&, ~1.1!

as long asua0u21ua1u251. When a measurement of the q
bit takes place the result will be the stateu0& with probability
ua0u2 or u1& with probability ua1u2. In the first case the sys
tem will then remain in the stateu0&, while in the second
case it will remain in the stateu1&. Due to superposition, a
system of N qubits is described by a unit vector in
2N-dimensional complex vector space~the Hilbert space! of
the form

ucN&5 (
i 50

2N21

a i u i &, ~1.2!

whereu i & are the 2N basis vectors and(ua i u251. Computa-
tions are done by changing the state of the system. S
conservation of probability is required only unitary transfo
mations are allowed. One source of the potential strengt
quantum computers is due to the fact that computations
performed simultaneously on all 2N states in the superpos

*Electronic address: dani@batata.fh.huji.ac.il
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tion. This amounts to an exponential parallelism compare
classical computers in which at any given time only o
number can be stored in theN-bit register. However, this
feature alone is not enough since only a single quantum s
is available after measurement@6#. The full power of quan-
tum computation is realized only when the superposit
principle is combined with the ability of quantum states
interfere. The latter has no classical analog and is the qu
tum ingredient that allows one to selectively control whi
state will have the highest probability of appearing af
measurement.

Similarly to classical computers, it turns out that all un
tary transformations involvingN qubits can be broken into
two-qubit unitary transformations@7–10#. This allows one to
construct a universal set of binary gates that is capable
implementing all the required operations. The actual c
struction of a quantum computer is a formidable task tha
believed to require many years before a basic prototype
be ready. Some of the potential physical media proposed
quantum computers include ions in ion traps@11#, atoms
coupled to optical resonators@12#, interacting electrons in
quantum dots@13#, and Ramsey atomic interferometry@14#.

The main difficulty identified so far in the construction o
a quantum computer is the decoherence of the quantum
perposition due to the interaction with the environment.
avoid errors one needs to isolate the quantum computer f
the environment as much as possible. Some redunda
combined with error correcting codes is considered a
promising way to reduce the accumulation of errors dur
the computation@15–22#. Another potential difficulty is to
maintain sufficient precision so that the quantum compu
will provide accurate results even after many steps of co
puting. Therefore, an efficient quantum algorithm should s
isfy not only that the time and memory required for the co
putation grow polynomially with the input size, but also th
precision: the number of bits of precision should grow on
logarithmically in the input size@1,23#.

In addition to the prospects of building a quantum co
puter, the experimental work stimulated by this field is e
pected to provide new insights into the foundations of qu
tum mechanics, as well as to lead to progress in
3661 © 1997 The American Physical Society
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development of new technologies. Furthermore, the new
spective that quantum computers provide about the comp
ity of algorithms is highly valuable for the theory of comp
tation even without the physical construction of such
computer. In particular, Shor’s algorithm for the polynom
time solution of the factorization problem@1# has shown that
problems that are considered intractable on classical com
ers may be tractable on a quantum computer, although s
restrictions are known to be related to the potential powe
a quantum computer@23#. Feynman@24# was the first to
suggest that quantum computers might be exponent
faster than classical computers at simulating quantu
mechanical systems with short-range interactions. A gen
demonstration to this effect was given by Lloyd@25#, who
also argued that quantum computers could efficiently ca
late spin-spin correlation functions in Ising models. So
explicit algorithms were later proposed for simulating phy
cal systems on quantum computers. These include the Sc¨-
dinger equation for interacting many-body systems@26–29#,
the Dirac equation@30#, and the quantum baker’s map@31#.

In this paper we consider a broad class of statistical ph
ics problems involving Ising spin systems. We develop
algorithm for simulating these systems on a quantum co
puter. Here we define the Ising spin systems and briefly
view the numerical techniques in use for their simulation
classical computers. These systems are important bot
models of magnetic phase transitions and as the most u
models for the analytical and numerical studies of ph
transitions in general@32,33#. The numerical simulation o
such systems has been an active field of research for the
five decades since the introduction of the Metropolis al
rithm @34#. Typically, spin systems are defined on
d-dimensional lattice in which there areN spinssi , one at
each lattice sitei , and nearest-neighbor coupling betwe
spins. The energy of the system is given by the near
neighbor Edwards-Anderson Hamiltonian@35#

H52(
^ i , j &

Ji j sisj2(
i 51

N

hisi , ~1.3!

where^ i , j & represents summation only over pairs of near
neighbors,Ji j is the coupling betweeni and j , andhi is the
local magnetic field. The most commonly studied mode
the Ising model@36# in which each spin has two state
si561. The bondsJi j then determine the nature of the in
teractions. In the ordinary ferromagnetic~antiferromagnetic!
Ising model all bonds satisfyJi j 5J (Ji j 52J), where
J.0. In the6J Ising spin glass there are quenched rand
bonds chosen from a bimodal distributio
P(Ji j )5pd(Ji j 2J)1(12p)d(Ji j 1J). The random bonds
in the Ising spin glass can also be drawn from a continu
distribution such as the Gaussian distribution.

Numerical studies of spin systems have been perform
for a vast variety of lattices including the square and tria
gular lattices in two dimensions and cubic, hexagonal,
hexagonal closed packed in three dimensions. Here we
concentrate mainly on finite hypercubic lattices ind dimen-
sions, which includeN5Ld sites, whereL is the number of
sites along each edge. Since each spin has two states,
Ising spin systems exhibit an exponentially large phase sp
of 2N configurations. The partition function of Ising-typ
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models is given by a sum over all configuration
Z5($s%exp(2bH@$s%#), where b51/kBT, kB is the Boltz-
mann constant, andT is the temperature. For a system
thermodynamic equilibrium, the partition function provide
the statistical weight of each one of the 2N configurations.
The statistical weight of the configuration$si%,i 51, . . . ,N, is
given by Prob@$si%#5exp(2bH@$si%#)/Z. Therefore, if the
partition function is known one can obtain exact results
all the thermodynamic quantities such as the magnetizat
susceptibility, and specific heat. Models for which analytic
calculations of this type can be performed include a vari
of one-dimensional~1D! models and the 2D Ising mode
@37#. However, for most systems of interest, including t
3D Ising model and most Ising spin-glass models, no a
lytical calculation of the partition function is available@38#.

The size of the input in computations of Ising spin sy
tems is simply the number of spinsN plus the number of
bondsNB that connect these spins. In models of the sho
range interaction considered here the number of bonds i
O(N). An exact numerical calculation of the partition fun
tion or any thermodynamic quantity would involve a sum
mation over the 2N terms that appear in the partition func
tion. As the system size increases the computation t
would increase exponentially, and this is obviously not fe
sible. In order to obtain thermodynamic averages a variety
Monte Carlo methods have been developed. These met
involve a sequential random sampling of the phase sp
moving from one configuration to the next according to
properly designed Markov process. In order to sample
configurations with the appropriate thermodynamic weigh
the Markov process must be able to access the entire p
space and to satisfy the detailed balance condition

Prob~$si%!W~$si%→$si%8!5Prob~$si%8!W~$si%8→$si%!,
~1.4!

where $si% and $si%8 are any two states of the system a
W($si%→$si%8) is the transition probability from one state t
the other in a single move of the Markov process@33#. When
these conditions are satisfied one can use the Monte C
results to obtain approximations to thermodynamic qua
ties.

In the most commonly used Metropolis algorithm@34#, at
each time step one spin is chosen randomly. The ene
differenceDE that would occur due to flipping the chose
spin is calculated. IfDE<0 the move is accepted and th
spin is flipped. IfDE.0 the move is accepted with prob
ability p5e2bDE. Since this rule satisfies detailed balanc
one can take samples of the configurations during the ru
obtain properties of the equilibrium phases such as magn
zation, susceptibility, correlation function, and correlati
length. Although for large systems it is feasible to scan o
an exponentially small part of the phase space, this part t
cally has an exponentially large weight and therefore Mo
Carlo simulations provide good approximations for the th
modynamic quantities.

The Metropolis algorithm and related techniques that
volve flipping one spin at a time are efficient as long as
system is not too close to a critical point, i.e., a second-or
phase transition. Near the critical point the simulation suff
from a ‘‘critical slowing down’’ and the number of Monte
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Carlo steps needed between uncorrelated configurat
grows asLz, wherez is the dynamical critical exponent@33#.
The reason for this slow dynamics is that near the criti
point there are large clusters of highly correlated spins
this situation there is a very small likelihood of flipping a
entire cluster due to the large energy barrier involved.
overcome this difficulty, cluster algorithms were introduc
in which entire clusters are flipped at once in a way t
maintains detailed balance@39#.

In addition to the regular lattice spin systems, there
been much interest in the study of disordered systems s
as frustrated Ising models@40,41# and the Ising spin glas
@42,43#. These systems exhibit competing ferromagnetic a
antiferromagnetic interactions. In particular, in plaquet
that include an odd number of antiferromagnetic bonds i
not possible to satisfy all the bonds simultaneously and
system is thus frustrated@40,41#. Spin glasses exhibit a com
plex energy landscape with a large number of metasta
states or local minima. Since these minima are separate
energy barriers, when the system is simulated using Mo
Carlo methods at low temperatures, it tends to be trap
around one local minimum from which it cannot escap
When the simulation is done at high temperature, the sys
can easily switch from the vicinity of one local minimum
another but cannot resolve the details, namely, reach the
cal minimum itself. The approach of simulated anneal
@44# in which the temperature is repeatedly raised and t
slowly decreased was found useful for obtaining thermo
namic averages. In particular, it provides a probabilistic
gorithm for exploring the local minima and for searching f
the ground state of the system. The problem of finding
ground state of the short-range 3D Ising spin glass, as we
the fully antiferromagnetic 2D Ising model in the presence
a constant magnetic field, was shown by Barahona to be
to the class of nondeterministic polynomial time~NP!-hard
problems, by a mapping to problems in graph theory@45–
48#.

In this paper we present an algorithm for the study o
class of random-bond Ising spin systems on a quantum c
puter. By use of interference, the algorithm can constru
with linear complexity, a lattice with a fixed portion o
plaquettes having predetermined bonds. The bonds conn
ing plaquettes are determined randomly, with the probab
of obtaining a nonfrustrated intermediate plaquette be
higher than that of a frustrated one. The superposition pr
erty of a quantum computer can be used in order to incl
the entire phase space of the resulting Ising system, such
the quantum-mechanical probability of each one of theN

states equals the thermodynamic weight of the correspon
spin configuration. In this sense the algorithm is exact. O
such a superposition is constructed one can perform a m
surement of all spins, which provides one of the 2N configu-
rations. Since the probabilities of the quantum states are
dered by the thermodynamic weights of the correspond
spin configurations, the partition function is constructed
ficiently. Putting aside questions of degeneracy, the lo
the energy of the configuration, the more likely it is to
obtained upon measurement. Therefore, the algorithm ca
used to find ground-state configurations of the spin syst
Unlike Monte Carlo simulations, which require a minim
number of steps between measurements to reduce the
ns
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correlation function between consecutively measured c
figurations@33#, measurements on the quantum computer
totally uncorrelated since the superposition is construc
anew before every measurement. Successive runs of th
gorithm therefore involve no dynamics of moving from on
configuration to another. A situation in which this procedu
is especially useful is in the vicinity of a critical point, wher
Monte Carlo simulations may suffer from a critical slowin
down. While cluster algorithms have been invented for re
lar Ising models@39,49#, which essentially solve this prob
lem, they are very limited in scope and can treat essenti
only Ising systems with a periodic bond structure. T
present algorithm is more general in that it applies
random-bond Ising models as well and avoids the problem
critical slowing down altogether.

The paper is organized as follows. The construction of
superposition of states for the 1D Ising model, with quant
probabilities equal to the thermodynamic weights, is cons
ered in Sec. II. Higher-dimensional Ising systems includ
the Bethe lattice and the 2D and 3D Ising models are c
sidered in Sec. III. A magnetic field is introduced in Sec. I
The conclusions appear in Sec. V.

II. 1D ISING MODEL

We begin our exposition of the algorithm by treating t
simple case of a 1D Ising model. Starting from the fu
ferromagnetic open chain, we will gradually introduce co
plexity, by considering the antiferromagnetic case, mix
ferromagnetic-antiferromagnetic models, spin glasses, an
nally close the boundary conditions. This last operati
which enables the use of transfer matrices in the class
case, allows for a comprehensive treatment of the 2D
higher-dimensional models.

A. Ferromagnetic case

The Hamiltonian for a linear, open ferromagnetic syste
of N spinssi561 is @50#

HN
152J (

i 51

N21

sisi 11 , ~2.1!

whereJ.0. Let yP@0,2N21# and $s%y
N be theN-digit bi-

nary expansion ofy usingsi521 for 0 andsi511 for 1.
The notation$s%y

N can also denote one of the 2N spin con-
figurations, with thermodynamic weight

Prob@$s%y#5
1

ZN
1 e2bHN

1[ $s%y] ~2.2!

~the N superscript on$s%y
N will be suppressed where it i

obvious!, where

ZN
15 (

y50

2N21

e2bHN
1[ $s%y] ~2.3!

is the partition function. It is the task of the algorithm
calculate exactly the probabilities above in a manner t
allows an easy identification of the configuration who
probability was found. To this end we introduce anN-qubit
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3664 56DANIEL A. LIDAR AND OFER BIHAM
register $s%y
N5us1 ,s2 , . . . ,sN&, where nowsi561 denote

the ground and excited states of thei th qubit~it is convenient
to use the same notation for the classical spins and the q
and this should not cause any confusion!. We term this a
register of ‘‘spin qubits.’’ Let u$2%N& denote the ground
state of all spin qubits. We seek a unitary operatorTN

1 that
simulates the Ising model in the sense

z^$s%y
NuTN

1u$2%N& z25Prob@$s%y#. ~2.4!

Thus TN
1 evolves the qubit register into a superposition

which every state uniquely codes for an Ising configurat
of spins, with a quantum probability equal to the thermod
namic weight of that configuration.TN

1 must be a ‘‘valid’’
quantum computer operator, i.e., it must be decompos
into a product of a polynomial~in N) number of one- and
two-qubit unitary operators only@4#. Such a decomposition
is possible with the following two operators: a one-qubitp/2
rotation

Ri us1 , . . . ,si , . . . ,sN&5
1

A2
~ us1 , . . . ,2si , . . . ,sN&

2si us1 , . . . ,si , . . . ,sN&)

~2.5!

and a two-qubit ‘‘Ising entanglement’’

Si j
1us1 , . . . ,si , . . . ,sj , . . . ,sN&

5
1

Ac
~x2Jsius1 , . . . ,si , . . . ,sj , . . . ,sN&

1sjx
Jsius1 , . . . ,si , . . . ,2sj , . . . ,sN&), ~2.6!

where

x[eb/2, c[
1

2
Z2

152 cosh~bJ!. ~2.7!

In what follows we will suppress the full register and ind
cate only the qubits operated on. It is straightforward
check thatRi andSi j

1 are indeed unitary, e.g., by considerin
their matrix representations in the basis whereu2&5(1,0),
u1&5(0,1), u22&5(1,0,0,0), u21&5(0,1,0,0),
u12&5(0,0,1,0), andu11&5(0,0,0,1):

R5
1

A2
S 1 1

1 21D ~2.8!

and

S15
1

AcS xJ x2J 0 0

2x2J xJ 0 0

0 0 x2J xJ

0 0 2xJ x2J
D . ~2.9!

It is interesting to note the similarity to the classical 1
transfer matrix
its

n
-

le

o

S x2J x22J

2x22J x2J D . ~2.10!

The xJ vs x2J comes from the fact that inS1 we have am-
plitudes, not probabilities.

The operator that simulates the 1D Ising problem can n
be written as

TN
15F )

i 5N21

1

Si ,i 11
1 GR1 . ~2.11!

ThusTN
1 is ap/2 rotation of the first qubit, followed by Ising

entanglements of successive pairs of qubits. This bares s
resemblance to the procedure using a transfer matrix to s
the 1D Ising model. The number of required operations
exactly N. The general ‘‘recipe’’ for writing down this op-
erator~in the absence of closed loops! is the following: one
always applies ap/2 rotation to the first qubit and then sub
stitutes an Ising-entanglement operator for each interac
pair of nearest-neighbor spins in the Hamiltonian.

It might be helpful to give an example at this point. For
open chain ofN<4 spins, Table I gives the amplitudes o
four spins, at each stage of the algorithm, as calculated f
Eq. ~2.11!. It is easily verified that the squares of the amp
tudes given in columns 4, 5, and 6 agree with the thermo
namic weights@given by Eq.~2.1!# for N52, 3, and 4 spins,
respectively, with a ferromagnetic interaction.~In order to
check, e.g, forN52, ignore the entries fors3 ands4.!

We proceed to prove thatTN
1 indeed satisfies Eq.~2.4!, by

mathematical induction. Let us consider first the minim
case N52 ~for N51 we cannot applyS1). We have
T2

15S12
1 R1, so that

T2
1u$2%2&5

1

A2
S12

1 ~ u22&1u12&)

5
1

A2c
@~xJu22&2x2Ju21&)

1~x2Ju12&2xJu11&)]

5
1

A2c
(

s1 ,s2561
2s2xJs1s2us1 ,s2&. ~2.12!

On the other hand, according to Eq.~2.2! the thermodynamic
weights of these four states are, respectively,ebJ/Z2

1 ,
e2bJ/Z2

1 , e2bJ/Z2
1 , and ebJ/Z2

1 . These are exactly the
squares of the above amplitudes. Next, assume by induc
that Eq.~2.4! holds forTN

1 , i.e., that

TN
1u$2%N&5 (

y50

2N21

Ay
1u$s%y&, ~2.13!

where
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TABLE I. Amplitudes of register states for a 1D Ising model with up to four spins.

1 2 3 4 5 6

us1 ,s2 ,s3 ,s4& initial R1 S12
1 S23

1 S34
1

u2222& 1 1/A2 xJ/A2c x2J/A2c x3J/A2c3/2

u2221& 0 0 0 0 2xJ/A2c3/2

u2212& 0 0 0 21/A2c 2x2J/A2c3/2

u2211& 0 0 0 0 xJ/A2c3/2

u2122& 0 0 2x2J/A2c 2x22J/A2c 2x2J/A2c3/2

u2121& 0 0 0 0 x23J/A2c3/2

u2112& 0 0 0 1/A2c x2J/A2c3/2

u2111& 0 0 0 0 2xJ/A2c3/2

u1222& 0 1/A2 x2J/A2c 1/A2c xJ/A2c3/2

u1221& 0 0 0 0 2x2J/A2c3/2

u1212& 0 0 0 2x22J/A2c 2x23J/A2c3/2

u1211& 0 0 0 0 x2J/A2c3/2

u1122& 0 0 2xJ/A2c 21/A2c 2xJ/A2c3/2

u1121& 0 0 0 0 x2J/A2c3/2

u1112& 0 0 0 x2J/A2c xJ/A2c3/2

u1111& 0 0 0 0 2x3J/A2c3/2
h-

te

to
A

u-
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on-

xi-
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in-

ed
Ay
1[

1

AZN
1

x2HN
1[ $s%y]fN,

fN[2)
i 52

N

~2si !. ~2.14!

Using this, we must show thatTN11
1 satisfies Eq.~2.4! for the

1D Ising model withN11 spins. Now

TN11
1 u$2%N11&5SN,N11

1 TN
1u$2%N&u2&

5 (
y50

2N21

Ay
1SN,N11

1 u$s%y
N&u2&, ~2.15!

where the last equality follows from the induction hypot
esis. But by definition ofS1,

SN,N11
1 u$s%y

N&u2&5
1

Ac
~x2JsNu$s%y

N&u2&2xJsNu$s%y
N&u1&).

Inserting this into Eq.~2.15!, we have

TN11
1 u$2%N11&5 (

y50

2N21
fN

AZN
1

e2bHN
1[ $s%y]/2

1

Ac

3~e2sNbJ/2u$s%y
N ,2&2esNbJ/2u$s%y

N ,1&).

~2.16!

The two terms in this sum arise from the two possible sta
of usN11&, so writing the exponents as exp(sNsN11bJ/2) and
using Eq.~2.1!, we obtain

TN11
1 u$2%N11&5 (

y50

2N1121
fN11

AZN11
1

e2bHN11[ $s%y]/2u$s%y
N11&.
s

The stateu$s%y
N11& thus appears with a probability equal

its thermodynamic weight, which completes our proof.
useful corollary is the following.

Corollary 1. Upon a measurement following the exec
tion of the algorithm, a state appears with a probability eq
to the thermodynamic weight of the corresponding spin c
figuration.

This implies that the present algorithm provides an appro
mation to the partition function that converges rapidly in t
number of measurements.

B. Antiferromagnetic case

In the antiferromagnetic case, the Hamiltonian for a l
ear, open system ofN spins is

HN
25J (

i 51

N21

sisi 11 , ~2.17!

whereJ.0. To treat this case we define a properly modifi
version of the Ising-entanglement operatorS1:

Si j
2usi ,sj&5

1

Ac
~xJsiusi ,sj&1sjx

2Jsiusi ,2sj&).

~2.18!

In matrix form

S25
1

AcS x2J xJ 0 0

2xJ x2J 0 0

0 0 xJ x2J

0 0 2x2J xJ
D ~2.19!

and it is easily checked thatSi j
2 is unitary. We claim that
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TN
25F )

i 5N21

1

Si ,i 11
2 GR1 ~2.20!

simulates the antiferromagnetic ‘‘1D Ising model’’ in th
sense of Eq.~2.4!. The proof is entirely analogous to th
ferromagnetic case. First one considers the caseN52, for
which

T2
2u$2%2&5

1

A2
S12

2 ~ u22&1u12&)

5
1

A2c
@~x2Ju22&2xJu21&)

1~xJu12&2x2Ju11&)].

The state probabilities are just the thermodynamic weig
that can be obtained from Eq.~2.17! for N52. Repeating the
induction argument that led to Eq.~2.16!, one finds here

TN11
2 u$2%N11&5 (

y50

2N21
fN

AZN
2

x2HN
2[ $s%y]A1

c

3~xsNu$s%y
N ,2&2x2sNu$s%y

N ,1&)

5 (
y50

2N1121
fN11

AZN11
2

e2bHN11
2 [ $s%y]/2u$s%y

N11&.

~2.21!

This proves thatTN
2 simulates the 1D antiferromagnetic Isin

model.

C. ‘‘1D spin-glass’’ case

We now consider the simplest case of a random-b
Ising model with open boundary conditions: the quench
mixed ferromagnetic-antiferromagnetic linear chain~also
known as the6J spin glass!. The Hamiltonian in this case
may be written as

HN
J 52 (

i 51

N21

Jisisi 11 , ~2.22!

where J5(J1 ,J2 , . . . ,JN21) is a fixed set of parameters
each of which can be6J and thus determines whether th
interaction betweensi andsi 11 is ferromagnetic (1) or an-
tiferromagnetic (2). There are a total of 2N21 J’s for the
length-N Ising chain, each of that can be regarded as a
ferent realization of quenched disorder. The operator wh
simulates the corresponding Ising problem is a natural g
eralization ofTN

6 :

TN
J 5F )

i 5N21

1

Si ,i 11
Ji GR1 , ~2.23!

where@51#
ts

d
,

f-
h
n-

Si j
Jiusi ,sj&5

1

Ac
~x2Jisiusi ,sj&1sjx

Jisiusi ,2sj&).

~2.24!

The unitarity ofSi j
Ji follows from the unitarity ofSi j

1 andSi j
2 .

Let us prove thatTN
J simulates the appropriate Ising problem

again, by induction. ForN52 there are two realizations o
the quenched disorder:J156J. Accordingly, there are two
T2

J’s: T2
1 andT2

2 . We have already shown that these ope
tors solve their corresponding Ising problem. Assume by
duction thatTN

J simulates the Ising problem forN spins.
There are now four possibilities in going toN11 since both
JN21 andJN can be6J. In fact, we have already dealt wit
the two casesJN215JN in proving the algorithm for the
fully ferromagnetic and antiferromagnetic cases. But inste
of considering separately the casesJN21ÞJN , it will be
more convenient to proceed generally. From the induct
hypothesis we have

TN
J u$2%N&5 (

y50

2N21

Ay
Ju$s%y

N&,

Ay
J5

fN

AZN
J

x2HN
J [ $s%y] . ~2.25!

Now TN11
J 5SN,N11

JN TN
J , so that using Eq.~2.24!,

TN11
J u$2%N&u2&5 (

y50

2N21
fN

AZN
J

x2HN
J [ $s%y]

1

Ac

3~x2JNsNu$s%y
N ,2&2xJNsNu$s%y

N ,1&)

5 (
y50

2N1121
fN11

AZN11
J

e2bHN11
J [ $s%y]/2u$s%y

N11&.

~2.26!

The amplitude squared of the configuration coded by$s%y
N11

is exactly its thermodynamic weight for a given quench
disorder J, so this completes the proof for the mixe
ferromagnetic-antiferromagnetic case. Of course, the fu
ferromagnetic and antiferromagnetic cases are specific
stances of this general model. The implementation of
algorithm in the present case, according to Eq.~2.23!, would
entail using~apart from thep/2 rotation! two different op-
erators in an order dictated by the sequence of ferromagn
or antiferromagnetic bonds in the Ising model one wishes
solve. The complexity, however, remainsO(N).

The generalization to continuous interactions is straig
forward. In this case

HN
G52 (

i 51

N21

Gisisi 11 , G[~G1 ,G2 , . . . ,GN21!,

~2.27!

whereG is a set of independent random variables, which
not have to be identically distributed. Suppose one prepar
setG. This corresponds to choosing a certain realization
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quenched disorder in the Ising spin glass. The quantum
erator that simulates the thermodynamic weights in this c
is

TN
G5F )

i 5N21

1

Si ,i 11
Gi GR1 , ~2.28!

where

Si j
Giusi ,sj&5

1

Aci

~x2Gisiusi ,sj&1sjx
Gisiusi ,2sj&),

ci52 cosh~bGi !. ~2.29!

In matrix form

SGi5
1

AciS xGi x2Gi 0 0

2x2Gi xGi 0 0

0 0 x2Gi xGi

0 0 2xGi x2Gi
D . ~2.30!

The only difference fromSi j
Ji of the 6J spin glass is that

each Ising entanglement now has its own normalization
tor, which clearly has no effect on the proof of the algorith

As N increases finite-size effects diminish. By constru
tion, our algorithm will provide inO(N) steps a ground stat
$s%* of a 1D spin glass with probability

p* 5exp~2bHN
G@$s%* # !/ZN

G . ~2.31!

This probability can be made arbitrarily close to 1 by p
forming the construction for low enough temperature. I
local minimum is found instead of the ground state, the
tire process should be repeated until the ground state is
tained. What is the average number of steps required
locating theglobal minimum in this manner? After the firs
run one has probabilityp* of having found$s%* . If not, one
failed with probabilityq512p* and then succeeded wit
probability p* , etc. Clearly the resulting distribution is geo
metric and thus the average number of runs until the glo
minimum is found is^n&51/p* @52#. The total number of
steps is seen to beO(N)/p* . The question of the complexity
of the algorithm for locating a ground state thus boils do
to the scaling ofp* with N. In one dimension this is in fac
trivial: there are exactly two degenerate ground states,
lated bysi→2si; i , obtained by simply following along the
chain and satisfying all bonds. Their energy isE52NBJ
~where NB5N21 is the number of bonds! so
p* 5exp(bNBJ)/ZN . The temperature appears here as a c
trol parameter: letD be the difference in potential energ
between a ground state and the next lowest states$s%†. Then
Eq. ~2.31! predicts thatp* will become dominant since
p* /p†5exp@D/(kBT)#. This indicates that the probability o
obtaining a ground state can be made arbitrarily close t
@53#. However, this is only true as long as the degener
gms of metastable states with energy close~of the order of
the average interaction strength^G&) to the ground-state en
ergy remains small in some proper sense. For high
dimensional spin glasses, it is well known that this numbe
p-
se

c-
.
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b-
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N dependent. Additional complications may arise in relati
to the connectivity of the system in higher dimensions. W
will return to this issue in later sections. In order to be ab
the discuss such systems, the problem of closing the bou
ary conditions must first be discussed. This is done next

D. Closing the boundary conditions

It should be remarked that the algorithm as described
far is in fact ‘‘classical.’’ A classical probabilistic compute
can run the algorithm with exactly the same efficiency si
ply by randomly choosing spinsi to be up or down with a
probability determined by the thermodynamic weight of t
configuration of all otheri 21 spins and bonds. The differ
ence is of course that the classical computer cannot stor
2N spin configurations. However, this by itself does not e
hance the computing power since only one configuration
accessible by measurement of the quantum register. The
fective classicality of the algorithm is due to the fact that
far we have only employed superpositions. In Sec. II F
will employ the purely quantum effect of interference in o
der to deal with the problem of a 1D Ising chain with clos
boundary conditions. Here we introduce the operator
quired for closing a 1D chain. Such a chain has as Ham
tonian in the6J spin-glass case

HN
J52(

i 51

N

Jisisi 11 ,

sN11[s1 , J[~J1 ,J2 , . . . ,JN!. ~2.32!

A reasonable approach to closing the loop on a quan
computer might seem to be an application of the opera
SN,1

JN after TN
J . However, this does not work since it chang

the amplitude ofus1&, which was already the correct thermo
dynamic weight. It turns out that a different approach
needed. Instead of working onus1&, one has to first introduce
a work qubit, sayuw&, on which the Ising-entanglement op
eration is performed:SN,w

uJNu . This placesuw& in a superposi-
tion of up and down states. Closing the loop is then p
formed by comparing the state ofus1& to that of the workbit
~rather than to that ofusN&), which acts effectively as the
fictitious spinsN11. If w5s1, the loop is closed since thi
corresponds tosN115s1, as it should. However, one is the
left to wonder what to do ifw52s1. Instead of discarding
this possibility as improper, it turns out to be fruitful to ado
a more general point of view. As will be shown in Eq.~2.38!,
the following interpretation also holds: ifw5s1, the loop is
closed ferromagnetically@sgn(JN)51#; if w52s1, the loop
is closed antiferromagnetically@sgn(JN)521#. Since the
sign of the interaction is determined randomly, we can o
specify the absolute value ofJN , hence the notationSN,w

uJNu .
The comparison operation can be performed by an exclu
or ~XOR!,

Xi j usi ,sj&5sisj usi ,sisj&, ~2.33!

or in matrix form
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X5S 0 21 0 0

1 0 0 0

0 0 21 0

0 0 0 1
D . ~2.34!

Thus, followingSN,w
uJNu , one appliesX1,w ; the combined opera

tion defines a new, three-qubit operator@54#

V i , j ,w
uJi u usi ,sj ,w&[Xj ,wSi ,w

uJi uusi ,sj ,w&

52sj

1

Aci

~xuJi usiusi ,sj ,2sjw&

2wx2uJi usiusi ,sj ,sjw&). ~2.35!

The algorithm for simulating the closed-chain 1D spin gla
can now be written as

TN
J5VN,1,w

uJNu TN
J . ~2.36!

To prove that this formula indeed yields the correct therm
dynamic weights, we may employ the result for the ope
ed
th
di

te
-

by

o
o

Th
er
th
m

fo
s

-
-

chain case, which was proved in Sec. II C, and include
extra state for the workbit. In the calculation to follow,
prime on the summation indicates a sum over all spins
cepts1 and

FN5~21!N)
i 51

N

si . ~2.37!

Now

TN
Ju$2%N&uw521&

5VN,1,w
uJNu TN

J u$2%N&u2&

5VN,1,w
uJNu (

y50

2N21
fN

AZN
J

x2HN
J [ $s%y] u$s%y&uw521&

5A 2

cN
(
y50

2N21
2s1fN

AZ
N

Jx2HN
J [ $s%y] u$s%y&

3~xuJNusNuw5s1&1x2uJNusNuw52s1&)

upon collecting terms with equaluw&:
A 2

cNZJN(
y

8 FN@~x2HN
J [ $21,s2 , . . . ,sN%y]x2uJNusNu$21,s2 , . . . ,sN%y&1x2HN

J [ $1,s2 , . . . ,sN%y]xuJNusNu2$1,s2 , . . . ,sN%y&)u1&

1~x2HN
J [ $1,s2 , . . . ,sN%y]x2uJNusNu$1,s2 , . . . ,sN%y&1x2HN

J [ $21,s2 , . . . ,sN%y]xuJNusNu$21,s2 , . . . ,sN%y&)u2&]

5A 2

cNZJN (
y50

2N21

FNx2HN
J [ $s%y] u$s%y&~xsNs1uJNuu1&1x2sNs1uJNuu2&)

5A 2

cNZJN (
sgn~JN!

(
y50

2N21

FNx2HN
J [ $s%y]xJNsNs1u$s%y&usgn~JN!&

5 (
sgn~JN!

(
y50

2N21
FN

AZN
J e2bHN

J[ $s%y]/2u$s%y&usgn~JN!&. ~2.38!
e
nce
as

tes
of

to

of
its
nti-
-

Since the amplitude squared of the stateu$s%y& is given by
the thermodynamic weight of the corresponding 1D, clos
chain spin-glass system, we have proved that the algori
that includes a workbit works for closed boundary con
tions.

How should one interpret the ‘‘usgn(JN)& ’’ in the last line
of Eq. ~2.38!? The workbit is in the excited or ground sta
according to whether sgn(JN) is positive or negative, respec
tively. That is, the state of the workbit is determined
whether the interaction between spinss1 andsN is ferromag-
netic or antiferromagnetic. However, in the simulation
Ising models one is interested in a specific set of bonds, s
is necessary to be able to determine the last bond sign.
is especially important for higher-dimensional models, wh
every plaquette corresponds to a closed 1D chain. For
reason we will present next a detailed analysis of the co
plexity associated with generating a single plaquette. Be
-
m
-

f
it
is

e
is
-

re

doing so, we note that a useful corollary follows from th
calculation above, given that there was no special importa
to the indices of the spins between which the loop w
closed.

Corollary 2. Closing the bond betweensi and sj using
V i jw

uJu always produces a superposition with half the sta
having probabilities equal to the thermodynamic weight
the Hamiltonian with a ferromagneticJi j and the other half
with antiferromagneticJi j .

Now the simplest way of determining the last bond sign is
measure it, following the application ofVN,1,w

uJNu . This irre-
versible, nonunitary operation collapses the superposition
uw& while leaving the superposed state of the spin qub
intact. It randomly chooses between a ferromagnetic or a
ferromagnetic bond connectings1 andsN , i.e., chooses be
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tween sgn(JN)561. Measurements are tantamount to cla
sical operations, so in light of the comment at the beginn
of this section, a measurement as a means of choosing
last bond sign leaves the algorithm in the classical rea
Therefore, it may not come as a surprise that measurem
will prove to be ineffective as a means of obtaining the d
sired last bond sign. Instead, one may employ interferenc
order to ‘‘erase’’ one of the last bonds and leave only
desired one. In Secs. II E and II F we will discuss both p
cedures in detail.

E. Measurements as a means of choosing
the desired bond sign

A measurement of the workbit collapses its superposit
into either the ferromagnetic or antiferromagnetic state.
we now show, which last bond sign has the higher proba
ity depends on whether or not the resulting closed chai
frustrated. From the result of Eq.~2.38! we have for the6J
spin glass

VN,1,w
uJNu TN

J u$2%N&u2&

5 (
sgn~JN!561

(
y50

2N21
FN

AZN
J e2bHN

J[ $s%y]/2u$s%y&usgn~JN!&,

~2.39!

whereJ[(J1 ,J2 , . . . ,JN) and uJi u5J. Let us now define
the ‘‘partial partition functions’’ZN

JN , i.e., ZN
1 for a ferro-

magnetic bond betweens1 and sN and ZN
2 for an antiferro-

magnetic bond. The relative weight of the ferromagnetic a
antiferromagnetic subspaces can then be expresse
r 5ZN

1/ZN
2 . Without loss of generality, let us assume fro

now on that an antiferromagnetic last bond results in a fr
trated system~i.e., the total number of antiferromagnet
bonds is odd! and vice versa. Thenr determines the relative
probability of obtaining a frustrated or unfrustrated chain
a result of the measurement on the workbit. It is intuitive
clear that the spin configurations of a frustrated system
generally have a higher energy than those of the corresp
ing unfrustrated system and one would thus expect to
ZN

1.ZN
2 . In one dimension this statement can be made

act, as we now show. Separating the last bond one finds

ZN
JN5 (

y50

2N21

e2b~HN
J [ $s%y] 2JNsNs1!, ~2.40!

which can be split into two terms, corresponding tos15sN
ands152sN :

ZN
JN5F (

$s%N

8 e2b~HN
J [ $s%s15sN

] 2JN!

1(
$s%N

8 e2b~HN
J [ $s%s152sN

] 1JN!G . ~2.41!

Defining HN
0 @$s%#[HN

J @$s%s15sN
# and HN

1 @$s%#

[HN
J @$s%s152sN

#, we can write this as
-
g
the
.

nts
-
in
e
-

n
s
l-
is

d
as

-

s

ll
d-
d

x-

ZN
JN5~x2JNZN

0 1x22JNZN
1 !,

ZN
0,1[(

$s%

8 e2bHN
0,1[ $s%] . ~2.42!

Using this,

ZN
1

ZN
2 5

x2JZN
0 1x22JZN

1

x22JZN
0 1x2JZN

1 . ~2.43!

The ‘‘constrained’’ Hamiltonians, wheresN56s1, can be
written as

HN
0 52 (

i 51

N22

Jisisi 112JN21sN21sN

5HN21
J 2JN21sN21s1 ,

HN
1 5HN21

J 1JN21sN21s1 . ~2.44!

This allows one to break up the constrained partition fu
tions in a manner similar to Eq.~2.41!:

ZN
0 5(

$s%
e2b~HN21

J [ $s%] 2JN21sN21s1!

5F(
$s%

8 e2b~HN21
J [ $s%s15sN21

] 2JN21!

1(
$s%

8 e2b~HN21
J [ $s%s152sN21

] 1JN21!G
5~x2JN21ZN21

0 1x22JN21ZN21
1 !. ~2.45!

Similarly,

ZN
1 5~x22JN21ZN21

0 1x2JN21ZN21
1 !. ~2.46!

One may continue to split up the Hamiltonians as in E
~2.44!. The general pattern is seen to be (0<n<N23)

ZN2n
0 52~x2JN2n21ZN2n21

0 1x22JN2n21ZN2n21
1 !,

ZN2n
1 52~x22JN2n21ZN2n21

0 1x2JN2n21ZN2n21
1 !.

~2.47!

Together with the obvious initial condition for a pair of spin
Z2

052x2J1, Z2
152x22J1, this defines a recursion relation th

can be solved to yield, for Eq.~2.42! (N>3),

ZN
JN5

2N22

x2~J1( i 51
N21Ji !

(
k50

N21

x2~J1~21!k1N21JN! f N~k!,

~2.48!

where

f N~k!5 (
i 1, i 2,•••, i k5k

N21

x4( j 51
k Ji j, f N~0!51. ~2.49!

The last function generates all possible different sums of
Ji ’s. For example, forN54 we find
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Z4
1

Z4
2 5

@1#1x4J@x4J11x4J21x4J3#1@x4~J11J2!1x4~J11J3!1x4~J21J3!#1x4J@x4~J11J21J3!#

@x4J#1@x4J11x4J21x4J3#1x4J@x4~J11J2!1x4~J11J3!1x4~J21J3!#1@x4~J11J21J3!#
. ~2.50!
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It can be checked that this agrees with the result obtai
directly from the corresponding Hamiltonians; indeed, E
~2.48! can be proved to hold by induction@55#. The impor-
tant point about Eq.~2.48! is the difference betweenZN

1 and
ZN

2 . As can be seen in Eq.~2.50!, there is an alternating ratio
of x4J between groups of similar terms inZN

1 and ZN
2 .

‘‘Similar terms’’ here refers to terms with the same numb
of Ji ’s, enclosed in square brackets in Eq.~2.50!. Since there
is a one-to-one correspondence of this type, we may uti
the elementary inequality@56#

min
i

S ai

bi
D<

( i
Nai

( i
Nbi

<max
i

S ai

bi
D ~2.51!

to obtain that

min~x4J,x24J!5x24uJu<
ZN

1

ZN
2 <x4uJu5max~x4J,x24J!.

~2.52!

The upper bound is approached asT→0. To see this, use Eq
~2.48! to express the ratio of unfrustrated to frustrated pa
tion functions as

ZN
1

ZN
2 5

(
k50

N21

x2J[12~21!k1N] f N~k!

(
k50

N21

x2J[11~21!k1N] f N~k!

. ~2.53!

SinceJN,0 results in a frustrated system, whenN is odd
there must be an even numberke* ~zero included! of ferro-
magnetic and an even number of antiferromagnetic bo
among the firstN21 Ji ’s. WhenN is even, there must be a
odd numberko* of ferromagnetic and an even number
antiferromagnetic bonds among the firstN21 Ji ’s. Now, as
T→0 the dominant term in both the numerator and deno
nator of Eq.~2.53! will be the one that has all the positiv
Ji ’s @such a term exists sincef N(k) generates all combina
tions of Ji ’s#. When T is sufficiently low, all other terms
become negligible since they are smaller by at leastx4J.
Thus, to understand the low-T behavior of Eq.~2.48! it suf-
fices to consider that of the dominant terms. As can be s
from the expression forf N(k), k counts how manyJi ’s ap-
pear in every term. Thus, for oddN the dominant term is
generated whenk5ke* ~is even!, whereas for evenN, the
dominant term results whenk5ko* ~is odd!. In both cases
k1N is odd. But this means that 2@J2(21)k1NJN# is zero
in the frustrated (JN52J) case and 4J in the unfrustrated
case. Thus the dominant term in the unfrustrated case i
ways greater byx4J than that of the frustrated case. Th
proves that the upper bound in Eq.~2.52! is indeed reached
asT→0. The implication is that an algorithm that attemp
to generate frustrated isolated plaquettes by measure
d
.

r

e

i-

ds

i-

en

al-

ent

alone will have to try an average of;x4J times before suc-
ceeding and this number grows exponentially as the temp
ture is lowered.

One might be tempted to try to correct a ‘‘wrong
plaquette instead of ‘‘discarding’’ it. However, it turns ou
that any correction procedure has probability less than 1
succeeding. For example, suppose one is interested in
frustrated case, but the measurement yielded an unfrustr
plaquette. The problem is then thatHN

J includes the bondJN

with the wrong sign. One could imagine several strategie
‘‘undo’’ this, which all start with a new workbitw8. For
example, one could employ a ‘‘biased random walk’’ proc
dure: one redoesV

N,1,w8

uJNu
, measures again, etc. The hope

that the resulting sum ofJN’s with random signs will at one
point add up to produce the originally desired ferromagne
bond. The probability for this to happen is equal to the pro
ability of return of some biased random walk where the b
increases with the distance from the origin. For the unbia
random walker in one and two dimensions this probability
1, but the waiting time is infinite@57#. For the biased random
walker the probability of return turns out to be zero. Th
means that a ‘‘random walker’’ correction procedure can
guarantee the desired result, at constant temperature. W
not aware of any other, more successful procedure. W
about turning a frustrated last bond into an unfrustrated o
Even this has probability less than 1, as a consideration
three-spin system will illustrate. Suppose one choo
J15J25J and after measuringw one findsJ352J. One
might then hope to correct this frustrated system by redo
V

3,1,w8

uJ3u
. A low-T analysis will suffice to show that this wil

not correct the error. At lowT the dominant spin configura
tion will be that with the lowest energyEmin . It is easily
checked that bothw8561 yield Emin522J and thus have
equal probability. The casew851 corresponds to a ferro
magnetic last bond and therefore corrects the Hamilton
However, in the equally probable opposite case the Ham
tonian now includes a last bond of strengthJ3522J. If this
had been the result of the correction procedure, one woul
facing a ~wrongly! biased random walk again since a ne
measurement would result in eitherJ35J or J3523J, with
the correspondingEmin52J and Emin523J. The latter is
more probable by a factore2bJ, so the correction fails.

These arguments show that procedures using only com
nations of superposition and measurement, have no con
over the type of plaquette they generate. In the next sub
tion we will introduce a procedure that does have this f
ture.

F. Using interference to close an isolated plaquette

After closing the last bond, the quantum register is in
superposition corresponding to a frustrated (w521) and
unfrustrated (w51) plaquette@Eq. ~2.38!# ~assuming, with-
out loss of generality, that there is an even number of a
ferromagnetic bonds among the firstN21 bonds!:
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uc&5TN
Ju$2%N&uw521&5uc2&1uc1&, ~2.54!

where

uc6&5
1

AZN
J (

y50

2N21

FNx2H6[ $s%y] u6&u$s%y& ~2.55!

andH6 corresponds toJN56J. We have intentionally writ-
ten the workbit first, so that in the binary representation
the spin configurations by the quantum register, the firstN

states correspond to the frustrated configurations (w521)
and the last 2N correspond to the unfrustrated configuratio
(w511). As shown in the preceding subsection, achiev
control over the plaquette type cannot be done by meas
ment alone. However, one may try to employ interference
order to erase one of the subspaces, thus leaving only
desired plaquette type. To see this, consider the wave f
tion uc& of the quantum register as a vector of length 2(N11),
with the first 2N entries corresponding touc2& and the last
2N entries corresponding touc1&. Within each such sub
space, the entries run over all possible spin configurati
y50, . . . ,2N21. Clearly,^cuc&51 by unitarity ofTN

J . We
now seek a new unitary transformationU such that

U6uc&5
1

AZ6

uc6&, Z65^c6uc6&. ~2.56!

Thus U rotates the superposed quantum register stateuc&
into a state representing either the frustrated or the unf
trated configurations. ThatU exists is clear since it takes on
norm 1 vector into another. Furthermore, it clearly mix
different spin configurations, i.e., creates interferences.
problem is to findU, given that it is a 2(N11)32(N11) matrix
of coefficients that depend onJ. In other words, one needs t
know the Gibbs distribution of the plaquette as input in ord
to find U. This might seem to defeat the purpose of t
algorithm altogether, but not so in view of the need to co
struct plaquettes with given bonds for the 2D and 3D Is
problems. In these higher-dimensional cases it is very us
to know how to produce small plaquettes of, e.g., three
four spins, for the triangular and square lattices, respectiv
Thus, in these cases, or indeed for any plaquette ofN spins,
one could calculate in advance the Gibbs distribution, findU,
and use it in the construction of a lattice. We will deal wi
the question of ‘‘integration’’ of a plaquette into a lattice
Sec. III B. Here we give the general~classical! algorithm for
the construction ofU for anyN and explicitly solve the case
N53,4.

1. General construction of N-spin interference operator

Let $êi% i 51
2n , n52N, be the standard basis of vectors f

R2n, with a 1 atposition i and zeros elsewhere. Consider
normalized real vectorv of length 2n ~representinguc&)
and another vectorw composed ofv’s upper half, also
normalized: w5(v1 ,v2 , . . . ,vn,0,0, . . . ,0)/a2 , where
a25(( i 51

nv i
2)1/2. Herew corresponds touc2&. We seek a

construction by two-qubit operations of a unitary matrixU_
such thatU_v5w @as in Eq.~2.56!#. The solution to this
problem is within the theory of generators ofSO(n), as out-
f

g
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-
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r
y.

lined in Ref.@58#, in terms of generalized Euler angles. Sin
in our casev and w are real vectors, it suffices to find a
orthogonalU_ . The idea is to first rotatew so that it coin-
cides withên and then solve the easier problem of finding t
transformedU_ that rotates the transformedv into ên . More
explicitly, suppose one has found an orthogonal matrixG2

(1)

satisfying w5G2
(1)ên . Clearly, G2

(1) is composed of two
blocks, an upper blockG28

(1) and a lower oneI n , then3n
identity matrix. The transformed equation is the
G2

(2)v85ên , with G2
(2)5(G2

(1))21U_G2
(1) and

~2.57!

Since only the lastn11 coordinates ofv8 are nonzero,G2
(2)

is composed of an upper blockI n21 and a lower block
G28

(2), which we need to find along withG28
(1). Having

found these, the solution can be written as

U_5G2
~1!G2

~2!~G2
~1!!21. ~2.58!

Following Ref.@58#, let us write

G2
~1!5 )

i 51

n21

gi~u i !, G2
~2!5 )

i 5n

2n21

gi~u i !, ~2.59!

where gi(u i) is a rotation byu i in the plane spanned b
(êi ,êi 11) of R2n:

gi~u i !5S I i 21

cosu i sinu i

2sinu i cosu i

I 2n2 i 21

D . ~2.60!

Application of G2
(1) to ên results in the set of equations

wn5cosun21 ,

wn215sinun21cosun22 ,

wn225sinun21sinun22cosun23 ,

A

w25sinun21sinun22•••sinu2cosu1 ,

w15sinun21sinun22•••sinu2sinu1 , ~2.61!

with the solution (k51, . . . ,n21)

cosuk5
vk11

r k11
,

sinuk5
r k

r k11
,
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r j5S (
i 51

j

v i
2D 1/2

. ~2.62!

Similarly, the application of (G2
(2))21 to ên results in

vn85cosun ,

vn118 5sinuncosun11 ,

vn128 5sinunsinun11cosun12 ,

A

v2n218 5sinunsinun11•••sinu2n22cosu2n21 ,

v2n8 5sinunsinun11•••sinu2n22sinu2n21 , ~2.63!

yielding (k5n, . . . ,2n21)

cosuk5
vk8

r k
,

sinuk5
r k11

r k
, sinu2n2152

r k11

r k
,

r j5S (
i 5 j

2n

v i8
2D 1/2

. ~2.64!

The case w5(0, . . . ,0,vn11 , . . . ,v2n)/a1 , with
a15(( i 51

n v i
2)1/2, corresponds touc1& and we need to find

an orthogonalU1 such thatU1v5w. It can be seen by re
peating the arguments above that we now requ
w5G1

(1)ên11, whence G1
(1) has I n as its upper block,

and v85G1
(1)v5(v1 , . . . ,vn ,a1,0, . . . ,0) satisfies the

transformed equation v85G1
(2)ên11, where G1

(2)

5G1
(1)U1

21(G1
(1))21 hasI n21 as its lower block. Writing ac-

cordingly

G1
~1!5 )

i 5n11

2n21

gi~u i !, G1
~2!5)

i 51

n

gi~u i ! ~2.65!

leads to equations very similar to Eqs.~2.61!–~2.64!: one
needs to replacewi andv i by v i8 everywhere in Eqs.~2.61!
and ~2.62!, as well as allowk to range from 1 ton. In Eq.
~2.63! one should replacev i8 by wi , whereas in Eq.~2.64! k
should range fromn11 to 2n21 and v i8 needs to be re-
placed byv i . With these replacements it follows that theu i
are identical forU2 and U1 , except for un , for which
sinun

15cosun
2 . The interference matrix is given by

U15~G1
~1!!21G1

~2!G1
~1! . ~2.66!

This, together with Eqs.~2.57! and ~2.58!, uniquely solves
our problem. It remains to be shown explicitly howU6 can
be written in terms of one- and two-qubit operations on
original spin-qubit register.

We note that thegi(u i) are identity matrices except fo
232 blocks. Consider the representation of the basis$êi% by

s85$us18 , . . . ,sN8 &%y850
2N21 , where the successive register sta
e

e

s

differ by a singlequbit flip. In this basis application of eac
gi(u i) does not entangle states differing by more than o
qubit, so the correspondingĝi(u i) is a single-qubit operator

ĝi~u i !usi521&5cosu i u2&1sinu i u1&,

ĝi~u i !usi511&52sinu i u2&1cosu i u1&. ~2.67!

The remaining problem is thus seen to be the transforma

from the original ‘‘binary’’ basis$us1 , . . . ,sN&%y50
2N21 to s8

and back. This is easily accomplished by two-qubit ope
tions using the well-known classical Gray code@59#. The
Gray-to-binary transformation is accomplished by success
XORs starting from the last qubit@these differ somewha
from the definition in Eq.~2.33!, hence the different nota
tion#

Xi , j8 usi ,sj&→usi8 ,sj8&5usi ,2sisj&, ~2.68!

where an extra workbitwx represents0[21. For example,
for the two successive binary s basis states
uwx ,s1 ,s2 ,s3 ,s4&5u2,2,1,1,1& andu2,1,2,2,2& we
find, after application of) i 50

3 Xi ,i 118 , u2,2,1,2,2& and
u2,1,1,2,2&, respectively, which indeed differ by only
single qubit. Furthermore, clearlyX8 i , j

215Xi , j8 so the binary-
to-Gray transformation is accomplished by running the sa
sequence of XORs in reverse order~starting from the extra
workbit!. We can now finally write down the full interfer
ence transformation. Let

XN8 [Xwx ,w8 Xw,18 )
i 51

N21

Xi ,i 118 ~2.69!

and

Ĝ2
~1!5 )

i 51

2N21

ĝi~u i !, Ĝ2
~2!5 )

i 52N

2N1121

ĝi~u i !,

Ĝ1
~1!5 )

i 52N11

2N1121

ĝi~u i !, Ĝ1
~2!5)

i 51

2N

ĝi~u i !. ~2.70!

The inverse operators are obtained by reversing the orde
the products and negating all angles. Then

uwx&uc2&5X8N
21Ĝ2

~1!Ĝ2
~2!~Ĝ2

~1!!21XN8 uwx&uc&,

uwx&uc1&5X8N
21~Ĝ1

~1!!21~Ĝ1
~2!!21Ĝ1

~1!XN8 uwx&uc&
~2.71!

expresses the interference transformation leaving only
register states corresponding to frustrated or unfrustra
spin configurations.

2. Solution for the N53,4 spin system

We now employ the above formalism in order to expli
itly solve for the interference transformations of the thre
and four-spin systems, corresponding to the elementary c
of the triangular and square lattices, respectively. Firs
should be noted that for the6J model in one dimension, for
a closed Ising chain of given length, the spectra of all fru
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trated realizations of bond choices are identical and so
the spectra of all unfrustrated realizations. To see this, c
sider a specific spin configuration and realization of bon
with energyE and suppose one changes the sign of so
arbitrary pair of bondsJm ,Jn , m,n. This operation does
not change the frustration of the chain since this is de
mined by the parity of antiferromagnetic bonds. But by fli
ping all spinssm11 , . . . ,sn once again the energy isE since
the flipping ofsm11 andsn undoes the change in sign ofJm
and Jn, respectively, and all other spin flips occur in pa
that share a bond and thus cancel. So for every spin con
ration and choice of bonds there is another spin configura
with the same energy in a realization with the same frus
tion but different bonds. Clearly, the mapping above is o
to one, so that indeed the spectrum is identical for all bo
realizations with the same frustration. Returning to t
N53,4 spin systems, we are at liberty to consider, e.g.,
case where all bonds but the last are ferromagnetic. The
o

i
u

o-
II
te
n

.

re
n-
s
e

r-

u-
n
-

e
d
e
e
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perposition ofJN into a ferromagnetic and antiferromagnet
bond will represent all other unfrustrated and frustrated bo
realizations, respectively. The solution of Eqs.~2.62! and
~2.64! yields the following result for the transformation from
the superposition to the frustrated or unfrustrated subspa
Let

f k,l ,m[
x4Jk

Al 1mx8J
,

hk,l ,m,n[
x4Jk

Al 1mx8J1nx16J
. ~2.72!

Then, writing C[cos, the angles can be expressed as
lows:
N53:

Cu15
1

A2
Cu252

1

A3
Cu352 f 0,1,3 Cu45 f 1,1,4 Cu55 f 1,1,5 Cu652 f 1,1,6 Cu752 f 0,2,6

Cu1552
1

A2
Cu145

1

A3
Cu135 f 1,1,3 Cu1252 f 0,4,1 Cu1152 f 0,5,1 Cu105 f 0,6,1 Cu95 f 1,6,2

Cu8
25

(11x4J)23/2

f 0,1,3
5sinu8

1

N54:

Cu15
1

A2
Cu252

1

A3
Cu352h0,1,3,0 Cu45h1,1,4,0

Cu55h0,2,4,0 Cu652h0,3,4,0 Cu752h0,4,4,0

Cu852h1,4,5,0 Cu952h1,4,6,0 Cu105h1,4,7,0

Cu115h0,5,7,0 Cu1252h1,5,8,0

Cu1352h0,6,8,0 Cu145h0,7,8,0 Cu155h0,8,8,0

sinu16
2 5@h0,1,6,1(11x4J)2#215Cu16

1

Cu1752h2,2,12,2 Cu1852h1,2,12,1

Cu195h1,2,11,1 Cu205h1,2,10,1 Cu2152h1,2,9,1 Cu2252h1,2,8,1 Cu235h1,2,7,1 Cu245h0,2,6,1

Cu255h2,1,6,1

Cu265h1,1,6,0 Cu2752h1,1,5,0 Cu2852h1,1,4,0 Cu295h1,1,3,0 Cu305h1,1,2,0 Cu3152h1,1,1,0
We
od-

re
ere
to
2D
The regularity and similarity between terms in the same c
umn (cosui ,cosujwith i 1 j 516) for N53 is noteworthy. For
the four-spin system there is a similarity between terms
the same row, but we find a less regular solution. Let
remind the reader at this point of the motivation for intr
ducing the above transformations. We showed in Sec.
that the average number of attempts needed to genera
plaquette of given type using only superpositions and
interference grows asx4J5exp(2J/kBT) with the temperature
Using the interference transformations, the cost isO(1) in
l-

n
s

E
a

o

the plaquette size and independent of the temperature.
are now finally ready to discuss more interesting Ising m
els in two dimensions and above.

III. HIGHER-DIMENSIONAL ISING MODELS

The 1D Ising spin glass is rather trivial and the mo
interesting models are the higher-dimensional ones, wh
connectivity plays an important role. As an introduction
the schemes we will need to employ in dealing with the
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and 3D cases, consider first the ‘‘infinite-dimensional’’ B
the lattice, which has no closed loops.

A. Bethe lattice case

Consider a binary Bethe lattice, i.e., with spins located
the vertices of a binary tree~Fig. 1!. The spin glass Hamil-
tonian for aK-level deep tree can be written as

HK
G52 (

k51

K

(
i 51

2k

G~k21,d i /2e !~k,i !s~k21,d i /2e !s~k,i ! . ~3.1!

According to the general recipe of Sec. II A, the quantu
operator for calculating the weights of configurations in t
system is~for simplicity of notation we shall suppress th
indices onG where they are already indicated byS)
t

TK
G5F )

k5K

1

)
i 51

2k

S~k21,d i /2e !,~k,i !
G GR~0,1! . ~3.2!

In order to prove thatTK correctly calculates the probabili
ties of the spin-glass Ising model on the Bethe tree, we n
to show that~I! it does not matter in which order we conne
the spins occupying vertices one level deeper than their c
mon originator and~II ! a 1D chain that splits at its end int
two branches is correctly described.~I! allows us to perform
the first branching in the tree@from spin (0,1)# and~II ! @com-
bined with~I!# allows us to build up the tree recursively from
any existing end point. In particular, the order described
Eq. ~3.2! will be valid. Starting with~I!, we need to show
that @Si j

G ,Sik
G#50 ~the indicesi , j ,k are shorthand for the

double indices employed above!. Now
e

Si j
GSik

Gusi ,sj ,sk&5
1

Acik

Si j @x2Giksiusi ,sj ,sk&1skx
Giksiusi ,sj ,2sk&]

5
1

Aci j cik

$x2Giksi@x2Gi j siusi ,sj ,sk&1sjx
Gi j siusi ,2sj ,sk&] 1skx

Giksi

3@x2Gi j siusi ,sj ,2sk&1sjx
Gi j siusi ,2sj ,2sk&] %

5
1

Aci j cik

@x2~Gik1Gi j !siusi ,sj ,sk&1sjx
~Gi j 2Gik!siusi ,2sj ,sk&1skx

~Gik2Gi j !siusi ,sj ,2sk&

1sksjx
~Gik1Gi j !siusi ,2sj ,2sk&]. ~3.3!

On the other hand, by exchangingj andk everywhere in the last line, we obtain

Sik
GSi j

Gusi ,sj ,sk&5
1

Acikci j

@x2~Gi j 1Gik!siusi ,sk ,sj&1skx
~Gik2Gi j !siusi ,2sk ,sj&1sjx

~Gi j 2Gik!siusi ,sk ,2sj&

1sjskx
~Gi j 1Gik!siusi ,2sk ,2sj&]. ~3.4!

The order of the qubits in the kets is immaterial, so that by comparing the two results we find that indeed

@Si j
G ,Sik

G#50. ~3.5!

This is indicated graphically in Fig. 2~a!. Next we prove~II ! above, namely, thatSN,N12
G SN,N11

G TN
Gu$2%N&u2&N11u2&N12

@where, due to Eq.~3.5!, we may exchange the order ofSN,N12
G andSN,N11

G # yields the correct thermodynamic weight for th
Hamiltonian

H5 (
i 51

N21

Gi ,i 11sisi 111GN,N11sNsN111GN,N12sNsN12 . ~3.6!

Using the results of Eqs.~2.25! and ~3.3! we have
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SN,N12
G SN,N11

G TN
Gu$2%N&u2&N11u2&N12

5 (
y50

2N21

Aȳ N

G
SN,N12

G SN,N11
G u ȳ N&u2,2&

5
1

AcN,N12cN,N11
(
y50

2N21

Aȳ N

G u ȳ N&~x2sN~GN,N111GN,N12!u2,2&2xsN~GN,N112GN,N12!u1,2&

2xsN~GN,N122GN,N11!u2,1&1xsN~GN,N111GN,N12!u1,1&)

5
1

AcN,N12cN,N11
(
y50

2N1121

Aȳ N

G
sN11sN12xGN,N11sNsN111GN,N12sNsN12u ȳ N&usN11 ,sN12&

5
1

AcN,N12cN,N11
(
y50

2N1121
1

AZN
G

e2b~HN
G[ $s%y] 2GN11sNsN112GN12sNsN12!u ȳ N12&, ~3.7!
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which is the desired result. It should be noted that sin
@Si j

G ,Sik
G#50, any number ofS operators with a common

starting pointi will commute in pairs. Therefore, there
nothing special about the binary Bethe tree and we
equally well apply our algorithm, after a proper modificatio
of Eq. ~3.2!, to a Bethe tree with any kind of branching.

B. 2D Ising model

As was demonstrated in the 1D case, the key to being
to close loops is the creation of a superposition inbondspace
by using a workbit whose state is compared with the s
with which the loop is closed. Choosing a specific bond s
is then accomplished by an interference transformation
eliminates one of the bond subspaces. We now extend t
ideas in order to present an algorithm for simulating 2D Is
spin systems. Ideally, one would like to have an algorit
that can exactly calculate the thermodynamic weights of
arbitrary given spin-glass Hamiltonian

H52(
^ i , j &

Ji j sisj , uJi j u5J. ~3.8!

However, since the interference transformations introdu
in the 1D case require as input the thermodynamic weig
we cannot hope to deal with an arbitrary Hamiltonian.
stead, as will be shown here, the class of spin glasses tha
be dealt with by the present algorithm is that with predet
mined plaquettes of finite size. In other words, by using
terfence transformations one can constructisolated
plaquettes of any desired~finite! size and composition~of
bonds! and these plaquettes can then be connected toge
This creates new plaquettes, with random bond signs. T
the algorithm cannot provide complete control over the bo
composition of the Ising model it is used to simulate, but
resulting class of partially-random-bond systems is huge~ex-
ponentially large in the number of bonds!. Furthermore, by
e

n

le

n
n
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d
s,
-
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er.
us
d
e

lowering the temperature one can increase the probabilit
generating only unfrustrated plaquettes connecting the
fabricated ones. For example, choosing prefabricated unf
trated plaquettes will generate low-temperature simulati
of unfrustrated Ising models with very few defects. That is
Nd denotes the number of defect~i.e., frustrated! plaquettes,
then

Nd

N
;x24J. ~3.9!

We turn next to demonstrating how isolated plaquettes
be connected together to form a lattice.

1. Allowed algorithms

‘‘Hooking up’’ isolated plaquettes will require connectin
spins byV operators, all of which will eventually have t
share lattice points in pairs~or more!, as shown in Fig. 3.
Corollary 2 ensures that bonds can always be closed usinV
so as to produce the correct superposition. Since the ord
which the lattice is constructed might appear to be importa
the question of commutation of the various operators na
rally arises. In this section we will deal with this in som
detail. As for pairs ofV operators, all possible combination
commute@see Fig. 2~b!, ~I!–~IV !#:

@V i jw 1

uJu ,V jkw2

uJu #50, @V i jw 1

uJu ,V ikw2

uJu #50,

@V i jw 1

uJu ,Vk jw2

uJu #50, @V i jw 1

uJu ,Vklw2

uJu #50. ~3.10!

We demonstrate the calculation required to prove the firs
these relations~we drop the normalization factors and s
J51 for notational simplicity!:
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V jkw2
V i jw 1

usi ,sj ,sk ,w1 ,w2&

5V jkw2
@2sj~xsiusi ,sj ,sk ,2sjw1 ,w2&

2w1x2siusi ,sj ,sk ,sjw1 ,w2&)]

5sksj@xsj 1siusi ,sj ,sk ,2sjw1 ,2skw2&

2w2x2sj 1siusi ,sj ,sk ,2sjw1 ,skw2&

2w1xsj 2siusi ,sj ,sk ,sjw1 ,2skw2&

1w1w2x2sj 2siusi ,sj ,sk ,sjw1 ,skw2&],

whereas, on the other hand,

V i jw 1
V jkw2

usi ,sj ,sk ,w1 ,w2&

5V i jw 1
@2sk~xsj usi ,sj ,sk ,w1 ,2skw2&

2w2x2sj usi ,sj ,sk ,w1 ,skw2&)]

5sjsk@xsi1sj usi ,sj ,sk ,2sjw1 ,2skw2&

2w1x2si1sj usi ,sj ,sk ,sjw1 ,2skw2&

2w2xsi2sj usi ,sj ,sk ,2sjw1 ,skw2&

1w1w2x2si2sj usi ,sj ,sk ,sjw1 ,skw2&].

It can be verified that the last lines in these two calculatio
are identical, proving the first commutation relation. Next
consider combinations ofS andV. They all commute excep
one:

@Si j
J ,V ikw

uJu #50, @Si j
J ,Vkiw

uJu #50,

@Si j
J ,Vklw

uJu #50, @Si j
J ,V jkw

uJu #, ~3.11!

FIG. 1. Scheme for numbering vertices on the binary Bethe t
used in the Hamiltonian of Eq.~3.1!.
s

@Si j
J ,Vk jw

uJu #usi ,sj ,sk ,w&

5
1

Acick
xJsi~xJsk1wx2Jsk!usi ,2sj ,sk&

3@ usjw&2u2sjw&]. ~3.12!

We demonstrate this, again takingJ51 and dropping nor-
malization:

Vk jwSi j usi ,sj ,sk ,w&

5Vk jw@x2siusi ,sj ,sk ,w&1sjx
siusi ,2sj ,sk ,w&]

52sj~xsk2siusi ,sj ,sk ,2sjw&

2wx2sk2siusi ,sj ,sk ,skw&1sjx
sk1siusi ,2sj ,sk ,sjw&

2wsjx
2sk1siusi ,2sj ,sk ,2sjw&),

whereas

Si j Vk jwusi ,sj ,sk ,w&52sjSi j @xskusi ,sj ,sk ,2sjw&

2wx2skusi ,sj ,sk ,sjw&]

52sj@x2si1skusi ,sj ,sk ,2sjw&

1sjx
si1skusi ,2sj ,sk ,2sjw&

2wx2si2skusi ,sj ,sk ,sjw&

2wsjx
si2skusi ,2sj ,sk ,sjw&],

e,

FIG. 2. All possible commutation relations ofS ~full arrows!
andV ~dashed arrows!. ~a! @Si j ,Sik#50 ~needed for the Bethe lat
tice!. ~b! ~I!–~VI ! All combinations ofV operators commute.~c!
The commuting combinations ofS and V: ~I! @Si j ,V ikw#50, ~II !
@Si j ,Vkiw#50, ~III ! @Si j ,V jkw#50, and ~VI ! @Si j ,Vklw#50. ~d!
The noncommuting combination ofS and V. ~e! Additional com-
muting combinations needed in four dimensions and higher.
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which is different from the previous result in the second a
fourth terms. The reason that the relation in Eq.~3.12! does
not commute is that onlyVk jwSi j produces the right result
In the opposite order the same problem arises as when
tries to close a loop withS’s only. This relation is depicted
graphically in Fig. 2~d!. Given the commutation relations i
Eqs. ~3.10! and ~3.11! one is essentially free to connect th
isolated plaquettes in any order, as we prove next.

2. Proof of the algorithm

For simplicity we consider the case of a square latti
where one has prepared a set of 232 plaquettes and place
them with equal spacing on anN3M lattice ~Fig. 3!. Denote
the Hamiltonian for this system byH0

J . Clearly, the maxi-
mum density of nonoverlapping prefabricated 232
plaquettes that can be achieved is 1/4. This can be incre
by using larger plaquettes, at the price of increasing co
plexity in their fabrication. The problem is now to conne
plaquettes; from corollary 2 this can be done withV opera-
tors that connect twooccupiedlattice points. The geometrie
that may arise in connecting plaquettes are summarize
Figs. 2~b!–2~d!. The commutation relations of Sec. III B
show that the only problem can arise in the geometry
picted in Fig. 2~d!. However, as long asS is appliedbefore
V, the outcome is a correct superposition providedk @Fig.
2~d!# is the index of an occupied site. The commutation
lations ensure that in any order in which theV ’s are applied
the lattice is generated correctly. We may thus assume
some arbitrary sequence ofV ’s has been applied. We as
sume further that workbits corresponding to new bonds
measured after application ofV, so that they are no longer i
a superposition and a bond with random sign has bec
integrated into the lattice. It will then suffice to prove th
introducing a bond at an arbitrary location in the existi
lattice produces the correct superposition. Let us procee
induction and assume that some partial set of all bonds
been closed by the algorithm. These bonds can be e
horizontal or vertical and for definiteness we will assum
that they are always closed rightward or upward. Let us
note the set ofK vertical bonds by$(n,m)%K and theK8
horizontal bonds by$(n8,m8)%K8. The Hamiltonian for this
set is

H
~K,K8!

J
5H0

J1 (
$~n,m!%K

J~n,m!sn,msn,m11

1 (
$~n8,m8!%K8

J
~n8,m8!
8 sn8,m8sn811,m8, ~3.13!

with a corresponding operator

T
~K,K8!

J
[ )

$~n,m!%K

@Mwn,m
V

~n,m!~n,m11!wn,m

uJ~n,m!u #

3 )
$~n8,m8!%K8

@Mwn8,m8
V

~n8,m8!~n811,m8!wn8,m8

uJ
~n8,m8!
8 u

#T0
J .

~3.14!

Here Mwn,m
represents the measurement of workbituwn,m&.

The notation)$(n,m)%K
implies a product over all members o
d

ne
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ed
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-

at

re

e

by
as
er

-

the set$(n,m)%K , in any order, and similarly for the hori
zontal bonds~guaranteed to be correct due to the commu
tion relations!. Since the measurements have taken place,
workbits are no longer in a superposition afterT(K,K8)

J has
been applied. Therefore, the induction hypothesis is

T
~K,K8!

J u$2%NM&u$2%K1K8&5 (
y50

2NM21
1

AZ
~K,K8!

J

3e2bH
~K,K8!

J
[ $s%y]/2u$s%y&.

~3.15!

To see this it is helpful to consider for a moment the situ
tion that would arise without the intermediate measureme
for every new~horizontal or vertical! bonduJn,mu one closes,
one needs to introduce a new workbitwn,m . A total of
K1K8 bonds thus requires a workbit registeru$2%K1K8& as
above. AfteruJn,mu is closed, the workbit is in a superpos
tion of states corresponding to sgn(Jn,m)561. This super-
position is destroyed after the measurements, leaving
spin qubits’ superposition intact. This is the content of E
~3.15!.

The induction proof now requires showing that closing
additional bond, sayuJp,qu, produces the correct superpos
tion @60#. The calculation is essentially identical to that
Eq. ~2.38!. It is easily checked that~i! this calculation is
insensitive to whetheruJp,qu corresponds to a horizontal o
vertical bond and~ii ! the appearance of a double index f
every spin does not make any difference. There is thus
need to repeat the calculation of Eq.~2.38! and we conclude
the 2D algorithm to be proved.

FIG. 3. ~a! Preparation of a single plaquette by threeS operators
@ferromagnetic ~1!, ferromagnetic, antiferromagnetic (2)# and
closing withV. This is followed by an interference transformatio
that erases the antiferromagnetic subspace, leaving in this ca
frustrated (F) plaquette.~b! A lattice with full density of prefabri-
cated plaquettes~some unfrustratedU), connected byV operators
~dashed arrows!, before measurement of the bonds. In this case
vertical bonds are present and the lattice is diluted in the horizo
bonds.
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It should be noted that every intermediate stage in
construction of the full 2D lattice corresponds to adiluted
2D lattice, with bonds specified deterministically byH0

J and
other bonds being either ferromagnetic or antiferromagn
depending on the result of measuring the workbits. Thu
follows that the algorithm can be used to simulate dilu
Ising models as well, with the same restrictions applying
the generality of the class of these models as specified ab
i.e., the size of frustrated plaquettes must be finite.

3. Control of bond sign

One may wonder whether the lack of control over t
bond sign is special to the essentially 1D situation of clos
an isolated plaquette. In fact, the same problem arises w
ever a bond is closed usingV, as we argue next. Let u
suppose that the algorithm has correctly produced
thermodynamic weights of the Hamiltonia
H052(^ i , j &Ji j sisj , describingpart of the full 2D problem
and excluding in particular the bondJnm . Associated with
H0 is a partition function Z05($s%exp(2bH0@$s%#). Let
pnm[Prob@sgn(Jnm)51# be the probability of a ferromag
netic bond andqnm[Prob@sgn(Jnm)521# that of an anti-
ferromagnetic bond. When the new bondJnm is included, we
have for the ratio of these probabilities

pnm

qnm
5

(
$s%

e2bH0[ $s%]ebuJnmusnsm

(
$s%

e2bH0[ $s%]e2buJnmusnsm

. ~3.16!

This expression can be bounded from above and below
replacingsnsm in exp(6buJnmusnsm) by 11 or 21:

e2uJnmu(
$s%

e2bH0[ $s%]<(
$s%

e2bH0[ $s%]e2buJnmusnsm,
~3.17!

(
$s%

e2bH0[ $s%]ebuJnmusnsm<ebuJnmu(
$s%

e2bH0[ $s%] .

Inserting this into Eq.~3.16! yields

x24uJnmu<
pnm

qnm
<x4uJnmu. ~3.18!

This result is very similar to that obtained in the 1D case,
~2.52!, and although we cannot perform an explicit calcu
tion here, the implications are likely to be the same. Name
that the upper bound is approached asT→0 so that a frus-
trated plaquette becomes exp(2bJ) less likely than an unfrus
trated one. The main difference compared to the 1D cas
that now closing a single bondJnm may correspond to clos
ing several plaquettes at once, which can only amplify
effect. Thus the issue of control of the bond sign is ev
more problematic in two dimensions and above. Nevert
less, since isolated plaquettes can be ‘‘prefabricated,’’
algorithm covers an exponentially large class of Ising m
els, as argued above.
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C. 3D Ising model

Three-dimensional Ising models are notoriously diffic
both analytically and computationally. In particular, where
a large number of 2D models have yielded to analyses@61#,
only very few 3D systems have been solved analytica
@62–65#. Even so, all these models suffer from various sho
comings, such as having negative Boltzmann weights@62,63#
or being essentially 2D@64,65#. Computationally, the
plagues of two dimensions are of course multiplied in th
dimensions, making our knowledge of 3D systems limite
Moreover, there are good reasons to suspect that calcula
in three dimensions arefundamentallyharder than in two
dimensions. For example, some 3D problems, such as fi
ing the spin-glass ground state, are known to be NP h
@45,46,48#. This is related to the existence of a freezing tra
sition atTc.0 in three dimensions, in contrast to two dime
sions, whereTc50 @66#. Physically, this means that fo
T,Tc the system can get stuck in a local minimum in thr
dimensions~ergodicity breaking! and never reach the groun
state. Thus it is extremely important to develop efficient
gorithms for 3D systems. Let us now describe the extens
to three dimensions of the 2D algorithm presented in the S
III B.

Algorithm for three and higher dimensions

The algorithm for the 3D case is a natural extension
that for two dimensions and presents no essentially n
problems. One can either prepare 2D plaquettes and s
planes connected byV operators or prefabricate 3D cube
~using the methods of Sec. II F! and connect those withV ’s.
In both cases corollary 2 and the commutation properties
the V operators guarantee that the correct superpositio
produced, and the order in which plaquettes or cubes
hooked up does not matter. The only different feature is t
more than two bonds can now emanate from the same
~for a cubic lattice!. However, these present no proble
since the algorithm is invariant to the order of creation
such bonds, as they all commute in pairs. In other words,
induction proof for the 2D case holds here as well and the
algorithm is proved. Clearly, also the complexity remains
same, namely,O(N), as long as random bonds betwe
plaquettes are allowed. Moreover, the same argument h
for any dimensional Ising system.

IV. INCLUDING A MAGNETIC FIELD

In this final section we show how the present algorith
can be extended in order to deal with the Ising model in
presence of a magnetic field. The idea is to generalize
basicR andS operators introduced in the 1D case. Let

Ri
D iusi&5

1

Ac
1

0,D i
~xsiD iu2&2six

2siD iu1&) ~4.1!

and

SJi ,D j usi ,sj&

5
1

Acsi

Ji ,D j
~x2~Jisi1D j !usi ,sj&1sjx

Jisi1D j usi ,2sj&),

~4.2!
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where:

csi

Ji ,D j52 cosh@b~Ji1siD j !#. ~4.3!

It is easily checked thatRi
D i andSJi ,D j are unitary. The loop-

closing operatorV can be generalized accordingly:

V i , j ,w
uJi u,uD j uusi ,sj ,w&[Xj ,wSi ,w

uJi u,uD j uusi ,sj ,w&

5
2sj

Acsi

uJi u,uD j u
~xuJi usi1uD j uusi ,sj ,2sjw&

2wx2~ uJi usi1uD j u!usi ,sj ,sjw&). ~4.4!

A. Open-chain case

In order to introduce an arbitrary magnetic field on eve
spin in an open-chain geometry, consider the effect of ap
ing R andS on a two-qubit register:

S12
J1 ,D2R1

D1u22&

5
1

Ac
1

0,D1
(
s1,s2

2s2

Acs1

J1 ,D2
xJ1s1s21D1s11D2s2us1 ,s2&, ~4.5!

omitting some intermediate lines of by now familiar algeb
The coupling ofD i to thesi in the exponent is like that of a
magnetic field. However, the normalization factor also d
pends ons1, so it needs to be considered as well:

lncs
J,D5

1

2
@ ln~eb~J1D!1e2b~J1D!!1 ln~eb~J2D!1e2b~J2D!!#

1
s

2
@ ln~eb~J1D!1e2b~J1D!!

2 ln~eb~J2D!1e2b~J2D!!#

5
1

2
ln~4 cosh@b~J1D!#cosh@b~J2D!#!

1
s

2
lnS cosh@b~J1D!#

cosh@b~J2D!# D ,

so that

1

Acs
J,D

5expS 2
1

2
lncs

J,DD
5@c2

J,Dc1
J,D#21/4x2~1/2b!sln~c1

J,D/c2
J,D

!. ~4.6!

Collecting the exponents ofx in Eqs.~4.5! and~4.6! we find
for the two-qubit Hamiltonian

H2
o52J1s1s22FD12

1

2b
lnS c

1

J1 ,D111

c
2

J1 ,D111D Gs12D2s2 . ~4.7!

This suggests that in general the magnetic field on spi
simulated by the algorithm takes the form
y-

.

-

hi5D i2
1

2b
lnS c

1

Ji ,D i 11

c
2

Ji ,D i 11D , ~4.8!

whence theN-spin Hamiltonian for anopen 1D chain be-
comes

HN
o 52 (

i 51

N21

Jisisi 112 (
i 51

N21

hisi2DNsN . ~4.9!

Note thathi can take any value for a given choice of finiteJi
andb by tuning the parametersD i ,D i 11. To prove that the
algorithm simulates an Ising model with the Hamiltonian
Eq. ~4.9! we proceed by induction. Assuming

)
i 5N21

1

Si ,i 11
Ji ,D i 11R1

D1u$2%N&5vN (
y50

2N21

fNx2HN
o [ $s%y] u$s%y&,

vN[
1

Ac
1

0,D1
)
i 51

N21

@c
2

Ji ,D i 11c
1

Ji ,D i 11#21/4 ~4.10!

@wherefN is defined in Eq.~2.14!#, consider

)
i 5N

1

Si ,i 11
Ji ,D i 11R1

D1u$2%N11&

5vN (
y50

2N21

fNx2HN
o [ $s%y] u$s1 , . . . ,sN21%y&

3 SN,N11
JN ,DN11usN ,2&

5vN11 (
y50

2N1121

fN11x2HN11
o [ $s%y] u$s%y&, ~4.11!

where we used Eqs.~4.2! and ~4.6!–~4.8!. This proves the
algorithm for the open-chain case.

B. Closed-chain case

The algorithm for the closed-chain geometry takes
somewhat different form. Instead of applyingR1

D1 one ap-
plies an ordinaryp/2 rotation on the first qubit, and close
the loop withVN1w

uJNu,uD1u . This results, as usual, in a superp
sition of ferromagnetic and antiferromagnetic last bonds,
also of positive and negative fields ons1. To see this, con-
sider

uc&5 )
i 5N21

1

Si ,i 11
Ji ,D i 11R1u$2%N&

5 )
i 51

N21

@c
2

Ji ,D i 11c
1

Ji ,D i 11#21/4 (
y50

2N21

fNx2HN8 [ $s%y] u$s%y&,

~4.12!

where
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HN8 52 (
i 51

N21

Jisisi 112 (
i 52

N21

hisi1~1/2b!ln~c
1

J1 ,D2/ci
J1 ,D2!

2DNsN .

When we now introduce a workbit and applyV, we find,
after a calculation similar to Eq.~2.38!,

VN1w
uJNu,uD1uuc&uw52&

5)
i 51

N

@c
2

Ji ,D i 11c
1

Ji ,D i 11#21/4

3 (
w561

(
y50

2N21

FNx2HN
c [ $s%y] u$s%y&uw&, ~4.13!

whereDN11[D1,

HN
c 52(

i 51

N

Jisisi 112(
i 51

N

hisi . ~4.14!

HN
c is seen to be the correct Hamiltonian for a closed loop

the presence of the local fieldshi . The sum overw561 in
Eq. ~4.13! is such thatw5sgnJN5sgnD1, so that, indeed, the
algorithm produces a superposition over bond and fi
signs. Selecting a particular sign can be done with the in
ference method of Sec. II F, and the plaquette thus gener
can be integrated into a higher-dimensional lattice. A bo
connecting plaquettes should not have to include a field t
since it presumably connects spins that already have a
on them from the plaquette fabrication stage. Thus the s
ation in terms of controlling the introduction of a magne
field is better than that of the bonds: arbitrary fields can
generated by the algorithm with full control over the field
every lattice point. It is interesting to point out in this conte
that it is known that the 2Dfully antiferromagneticIsing
model with equal interactions, in the presence of aconstant
magnetic field, is a NP-hard problem@45#.

V. CONCLUSIONS AND OUTLOOK

To conclude, we have introduced an approach to the
merical study of statistical mechanics of Ising spin syste
on quantum computers. The approach consists of an a
rithm that allows one to construct a superposition of qu
states such that each state uniquely codes for a single
figuration of Ising spins. Some stages of the algorithm, s
as the construction of the open 1D chain, are equivalen
on
r

e
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ed
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h
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the Markov process used in the transfer matrix formalis
Closing loops can be done by repeated measurements
quiring ;exp(4bJ) attempts per frustrated plaquette. A cr
cial stage in the present algorithm, which leads to a poly
mial increase in efficiency over algorithms based
measurements alone is the use of an interference transfo
tion. This transformation eliminates part of the superposit
and thus determines whether the given plaquette will clos
a frustrated or unfrustrated configuration. This is done in o
step compared to;exp(4bJ) attempts per frustrated
plaquette in algorithms based on measurements alone. A
tral feature of the algorithm is that the quantum probabil
of each state in the superposition is exactly equal to the t
modynamic weight of the corresponding configuratio
When a measurement is performed, it causes the super
tion to collapse into a single state. The probabilities of m
suring states are ordered by the energies of the correspon
spin configurations, with the ground state having the high
probability. Therefore, statistical averages needed for ca
lations of thermodynamic quantities obtained from the pa
tion function are approximated in the fastest converging
der in the number of measurements. Unlike Monte Ca
simulations on a classical computer, consecutive meas
ments on a quantum computer are totally uncorrelated.

The algorithm applies to a large class of Ising system
including partially frustrated models. A magnetic field can
incorporated as well without increase in the complexi
which is linear in the number of spins and bonds. The m
problem of the algorithm is the limited control it offers in th
construction of aspecificrealization of bonds on the Ising
lattice. An attempt to controlall the bonds~and not only the
prefabricated ones! by repeating measurements may result
an exponential slowdown in performance as the tempera
is lowered and for this reason the algorithm fails to addr
the question of whether polynomial time~P! equals NP on a
quantum computer, in the context of finding the spin-gla
ground state. In summary, this paper provides tools for
simulation of Ising spin systems on a quantum computer
efficiently as the best classical algorithms. Work employi
these tools to achieve speedup over classical algorithms
progress.
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